DOI: 10.18503/1995-2732-2025-23-2-71-77
Abstract
The article is devoted to the problem of improving the operational performance of nuclear reactor systems, the relevance of which increases with the development of scientific, technical and technological progress. One of the conditions for the successful use of ceramic materials as absorbing elements for thermal neutron reactors is a detailed study of their microstructure and operational properties. Ceramics based on hafnates and oxides of rare earth elements under certain conditions shows high heat resistance and radiation resistance, therefore, in order to achieve optimal regulatory operational characteristics of the materials used, it is extremely important to control the conditions for obtaining complex oxide ceramics, which allows obtaining single-phase structures with high density and an ideal fluorite lattice in these conditions. Such an approach to solving the problem at the design stage not only improves the absorbing properties of materials, but also significantly increases their service life under high temperatures and neutron irradiation. Research shows that adding certain rare earth metal oxides improves the mechanical properties of materials, making them more durable and efficient. Further development of this area opens up new horizons for improving the safety and efficiency of nuclear power. The materials of the article are of interest in modernizing technological processes of nuclear technologies at the design and initial development stage, as well as in training highly qualified specialists and ordinary readers. The results obtained in the course of complex studies require further understanding. The results of the studies also showed that dysprosium hafnate, like other materials with a disordered structure, have high radiation resistance. It has been established that a change in composition determines synthesis, and the use of various methods allows obtaining materials with differentiated properties, which directly affects the physical and operational characteristics.
Keywords
ceramics, synthesis, technology, nuclear reactor, absorbing element
For citation
Sharipzyanova G.Kh. Complex Oxide Ceramics of Rare Earth Elements for Nuclear Reactors. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 2, pp. 71-77. https://doi.org/10.18503/1995-2732-2025-23-2-71-77
1. Golik V. I., Klyuev R.V., Martyushev N.V., Zyukin D.A., Karlina A.I. Prospects for return of valuable components lost in tailings of light metals ore processing. Metallurgist. 2023;67(1-2):96-103. DOI: 10.1007/s11015-023-01493-5
2. Bosikov I.I., Klyuev R.V., Revazov V.Ch., Pilieva D.E. Performance evaluation of functioning of natural-industrial system of mining-processing complex with help of analytical and mathematical models. IOP Conference Series: Materials Science and Engineering. IOP Conf. Ser.: Mater. Sci. Eng. 2018;327:022013.
3. Tretyakov Yu.D., Metlin Yu.G. Keramika – material budushchego [Ceramics – the material of the future]. Moscow: Znanie, 1987, 47 p. (In Russ.).
4. Tretyakov Yu.D., Lepis H. Khimiya i tekhnologiya tverdofaznyh materialov: uchebnoe posobie [Chemistry and technology of solid–phase materials]. Moscow: Publishing House of Moscow State University, 1985, 253 p. (In Russ.).
5. Shevchenko V.Ya., Barinov S.M. Tekhnicheskaya keramika [Technical ceramics]. Moscow: Nauka, 1993, 192 p. (In Russ.).
6. Tolkacheva A.S., Pavlova I.A. Obshchie voprosy tekhnologii tonkoy keramiki: ucheb. posobie [General issues of fine ceramics technology: textbook]. Yekaterinburg: Ural Publishing House, 2018, 184 p. (In Russ.).
7. Balkevich V.L. Tekhnicheskaya keramika [Technical ceramics]. Moscow: Stroyizdat, 1984, 256 p. (In Russ.).
8. Yakovkina L.V., Kichai V.N., Smirnova T.P. Preparation and properties of HfO2 thin films. Inorg. Mater. 2005;41:1300-1304.
9. Andrievskaya E.R. Phase equilibria in refractory oxide systems of zirconium dioxide, hafnium and yttrium with oxides of rare earth elements. Journal of the European Ceramic Society. 2008;28(12):2363-2388.
10. Cherkasova T.G., Cherkasova E.V., Tikhomirova A.V., Gilyazidinova N.V., Klyuev R.V., Martyushev N.V., Karlina A.I., Skiba V.Y. Study of matrix and rare elements in ash and slag waste of a thermal power plant concerning the possibility of their extraction. Metallurg [Metallurgist], 2022;65(11-12):1324-1330. DOI: 10.1007/s11015-022-01278-2.
11. Mazilin I. V., Baldaev L. H., Drobot D. V., Akhmetgareeva A.M., Zhukov A. O., Khismatullin A. G. Thermal and thermophysical properties of thermal protective coatings based on lanthanum zirconate. Perspektivnye materialy [Promising materials], 2013;(7):21-30.
12. Shevchenko V.Ya., Barinov S.M. Tekhnicheskaya keramika [Technical ceramics]. Moscow: Nauka, 1993, 187 p. (In Russ.).
13. Avvakumov E.G. Mekhanohimicheskiy sintez v neorganicheskoy khimii [Mechanochemical synthesis in inorganic chemistry]. Novosybirsk: Nauka, 1991, 264 p. (In Russ.).
14. McCormick P.G., Fros F.H. Fundamentals of mechanochemical processing. JOM. 61-65 (1998).
15. Gusev A.I. Nanometrialy, nanostruktury, nanotekhnologii [Nanometrials, nanostructures, nanotechnology]. Moscow: Fizmatlit, 2005, 416 p. (In Russ.).
16. Andrievsky R.A., Ragulya A.V. Nanostrukturnye materialy [Nanostructured materials]. Moscow: Academy Publishing center, 2005, 192 p.
17. Ryzhonkov D.I., Levina V.V., Dzidziguri E.L. Ultradispersnye sistemy: poluchenie, svoystva, primenenie [Ultradisperse systems: preparation, properties, application]. Moscow: Studies, 2010, 182 p. (In Russ.).
18. Potel M. et al. Sol-gel synthesis and kinetics of crystallization of dysprosium titanate Dy2Ti2O7 for photonic applications. Mater. Chem. Phys. 2015;168:159-167.
19. Sikafus K.E. et al. Resistance to radiation-induced amorphization and radiation resistance of structurally related oxides. Mater. 2007;3:217-223.
20. Risovanny V.D. et al. Dysprosium hafnate as an absorbing material for control rods. J. Nucl. Mater. 2006;355:163-170.
21. Risovanny V.D, Varlashova E.E., Suslov D.N. Dysprosium titanate as an absorbent material for control rods. J. Nucl. Mater. 2000;281:84-89.
22. Kim H.S. et al. Properties of dysprosium titanate as a material for control rods. 2007, pp. 10-11.
23. Krasnorutsky V.S. et al. Hot pressing of granules of hafnate And dysprosium titanate. 2012;50(11):708-713.
24. Golik V. I., Klyuev R. V., Martyushev N. V., Zyukin D. A., Karlina A. I. Technology for nonwaste recovery of tailings of the mizur mining and processing plant. Metallurgist. 2023;66(11-12):1476-1480. DOI: 10.1007/s11015-023-01462-y.
25. Risovanny V.D., Zakharov A.V., Muraleva E.M. New promising absorbing materials for thermal neutron nuclear reactors. Vopr. atom. nauki i tekhniki. Ser. Fizika radiats. povrezhdeniy i radiats. materialovedenie [Issues of atomic science and technology. Ser. Physics of radiation damage and radiation chemistry of materials], 2005;(3(86)):87-93.
26. Friedman S.R., Risovanny V.D., Zakharov A.V., Toporova V.G. Radiation resistance of the absorbing element CPS AR VVER-1000 with boron carbide. Issues of atomic science and technology. Ser. Physics of radiation damage and radiation chemistry of materials. 2001;(2):84-90.
27. Perova E.B., Spiridonov L.N., Komisarova L.N. Phase equilibria in the HfO2-Dy2O3 system. Izv. AN SSSR. Neorgan. Materialy [News of the USSR Academy of Sciences. Non-organic materials], 1982;8(10):1878-1882.
28. Mahmudov F.A., Shaimardanov E.N., Kabgov H.B. Preparation and properties of nanostructured dysprosium oxides. Dokl. AN Rep. Tadjikistan [Reports of the Academy of Sciences of the Republic of Tajikistan], 2013;56(2):130-134.
29. Panneerselvam G. et al. Thermophysical measurements on dysprosium and gadolinium titanates. J. Nucl. Mater. 2004;327:220-225.
30. Jung S., Kim S., Lee S. Studies of the synthesis and sintering of Dy2TiO5 obtained chemically on a polymer carrier. J. Nucl. Mater. 2006;354:137-142.
31. Lyashenko L.P., Shcherbakova L.G., Kolbanev I.V., Knerelman E.I., Davydova G.I. Mechanism of structure formation of samarium and holmium titanates obtained from mechanoactivated oxides. Inorg. Mater. 2007;43(1):46-54.
32. Chernyshov V.M., Ryakhovskikh V.I., Poslavsky A.O., Ponomarenko V.B., Makovsky V.D., Osadchy A.I.; Lunin G.L., Biryukov G.I., Vasilchenko I.N. Reguliruyushchiy sterzhen yadernogo reaktora [The regulating rod of the nuclear reactor]. Patent RU, no. 2077741, 1997.
33. Safranyak-Visa I., Hilzer B., Talik E., Pietrashko A., Malich B. Ferroelectric powders of perovskite na-n obtained by mechanochemical synthesis. Process. Adj. Ceramics. 2010;4(3):99-106.