DOI: 10.18503/1995-2732-2025-23-2-61-70
Abstract
Problem Statement (Relevance). At least 500 million tonnes of phosphogypsum (by-product of phosphoric acid and phosphate fertilizer technology) are in Russian dumps. In most cases, it is common to store phosphogypsum by open method, which inevitably leads to environmental pollution, disturbance of the natural landscape and loss of valuable components. According to literary data, the level of phosphogypsum utilization today is approximately 1 %. Phosphogypsum consists of from 0.1 % to 0.9 % of the rare earths, consequently it is an available secondary source of these metals. Objective is an increasing of phosphogypsum processing level by carbonate-alkaline method due to obtainining an additional rare earth product. Methods Applied. Chemical composition of phosphogypsum samples and productive solutions was determined by ICP analysis, the morphology of phosphogypsum – by SEM, and the rare earth metal sediments identification – by XRF analysis. Originality. Carbonate-alkaline method approbation was carried using different originated phosphogypsum samples (formed from phosphorite and apatite; obtained by dihydrate and semi-hydrate technology; dumped and freshly obtained). Result. Conversion level of calcium sulphate into calcium carbonate was determined for technogenic phosphogypsum samples and was 96.4–98.4%; based on experimental data obtained degree of rare earth metals extraction into solution was 56.8–68.2% for sum rare earth; variants of further rare earth metals extraction from leaching solution by sedimentation with oxalic or phosphoric acid were proposed. Practical Relevance. Scientific results can be applied for development of phosphogypsum utilization technology by carbonate-alkaline method.
Keywords
phosphogypsum, rare earth elements, lanthanides, carbonate complexes, conversion, leaching
For citation
Gerasev S.A., Glazova K.D., Kurochkin I.O., Kuznetsov V.V., Litvinova T.E. Associated Rare Earth Elements Extraction from Phosphogypsum by Carbonate-Alkaline Method. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 2, pp. 61-70. https://doi.org/10.18503/1995-2732-2025-23-2-61-70
1. Ogata T., Narita H. Separation of Adjacent Light Rare Earth Elements Using Silica Gel Modified with Diglycolamic Acid. Materials. 2024;17;2648. https://doi.org/10.3390/ma17112648
2. Di J., Ding, X. Complexation of REE in Hydrothermal Fluids and Its Significance on REE Mineralization. Minerals. 2024;14:531. https://doi.org/10.3390/min14060531
3. Podmiljšak B., Saje B., Jenuš P., Tomše T., Kobe S., Žužek K., Šturm S. The Future of Permanent-Magnet-Based Electric Motors: How Will Rare Earths Affect Electrification? Materials. 2024;17:848. https://doi.org/10.3390/ma17040
4. Behrsing T., Blair V.L., Jaroschik F., Deacon G.B., Junk P.C. Rare Earths - The Answer to Everything. Molecules. 2024;29:688. https://doi.org/10.3390/molecules29030688
5. Pathapati S.V.S.H., Free M.L., Sarswat P.K. A Comparative Study on Recent Developments for Individual Rare Earth Elements Separation. Processes. 2023;11:2070. https://doi.org/10.3390/pr11072070
6. Cherepovitsyn A., Solovyova V., Dmitrieva D. New challenges for the sustainable development of the rare-earth metals sector in Russia: Transforming industrial policies. Resources Policy. 2023;81:103347b. https://doi.org/10.1016/j.resourpol.2023.103347
7. Okrugin A., Zhuravlev A. Mineralogical and Geochemical Evidence of Paragenetic Unity of Igneous Silicate and Carbonatite Rocks of the Tomtor Massif in the North-East of the Siberian Platform. Minerals. 2023;13:211. https://doi.org/10.3390/min13020211
8. Lutskiy D. S., Lukyantseva E. S., Mikheeva V. Y., Grigorieva L. V. Investigation of the extraction of samarium and gadolinium from leaching solutions of phosphorus-containing raw materials using solid extractants. Arab Journal of Basic and Applied Sciences. 2023;30(1):68-73. https://doi.org/10.1080/25765299.2022.2157954
9. Ormerod J., Karati A., Baghel A.P.S., Prodius D., Nlebedim I.C. Sourcing, Refining and Recycling of Rare-Earth Magnets. Sustainability. 2023;15:14901. https://doi.org/10.3390/su152014901
10. Papagianni S., Moschovi A.M., Sakkas K.M., Chalaris M., Yakoumis, I. Preprocessing and Leaching Methods for Extraction of REE from Permanent Magnets: A Scoping Review. AppliedChem. 2022;2:199-212. https://doi.org/10.3390/appliedchem2040014
11. Akcil A., Swami K.R., Gardas R.L., Hazrati E., Dembele S. Overview on Hydrometallurgical Recovery of Rare-Earth Metals from Red Mud. Minerals. 2024;14:587. https://doi.org/10.3390/min14060587
12. Pirzada M.D.S. Alternative Resources of Rare Earth Elements in Pakistan. Mater. Proc. 2024;17:26. https://doi.org/10.3390/materproc2024017026
13. Mukaba J.-L., Eze C.P., Pereao O., Petrik L.F. Rare Earths’ Recovery from Phosphogypsum: An Overview on Direct and Indirect Leaching Techniques. Minerals. 2021;11:1051. https://doi.org/10.3390/min11101051
14. Amirshahi S., Jorjani E. Preliminary Flowsheet Development for Mixed Rare Earth Elements Production from Apatite Leaching Aqueous Solution Using Biosorption and Precipitation. Minerals. 2023;13:909. https://doi.org/10.3390/min13070909
15. Levickaya K., Alfimova N., Nikulin I., Kozhukhova N., Buryanov A. The Use of Phosphogypsum as a Source of Raw Materials for Gypsum-Based Materials. Resources. 2024;13:69. https://doi.org/10.3390/resources13050069
16. Pashkevich M.A., Danilov A.S. Ecological security and sustainability. Zapiski Gornogo instituta [Journal of Mining Institute], 2023;260:153-154. (In Russ.)
17. Pliaka M., Gaidajis G. Potential uses of phosphogypsum: A review. Journal of environmental science and health. Part A, Toxic/hazardous substances & environmental engineering. 2022;57(9):746–763. https://doi.org/10.1080/10934529.2022.2105632
18. Al-Thyabat S., Zhang P. Extraction of rare earth elements from upgraded phosphate flotation tailings. Minerals & Metallurgical Processing. 2016;33(1). https://doi.org/10.19150/mmp.6464
19. Semyachkov A.I., Pochechun V.A., Semyachkov K.A. Hydrogeoecological conditions of technogenic groundwater in waste disposal sites. Zapiski Gornogo instituta [Journal of Mining Institute], 2023;260:168-179. (In Russ.) https://doi.org/10.31897/PMI.2023.24
20. Ribeiro P.G., Dinali G.S., Boldrin P.F, et al. Rare Earth Elements (REEs) Rich-Phosphate Fertilizers Used in Brazil are More Effective in Increasing Legume Crops Yield Than Their REEs-Poor Counterparts. Int. J. Plant Prod. 2021;15:1-1. https://doi.org/10.1007/s42106-021-00129-5
21. Ramos S.J., Dinali G.S., Carvalho T.S., Chaves L.C., Siqueira J.O., Guilherme L.R. Rare earth elements in raw materials and products of the phosphate fertilizer industry in South America: Content, signature, and crystalline phases. Journal of Geochemical Exploration. 2016;168:177-186. https://doi.org/10.1016/j.gexplo.2016.06.009
22. Wen F., Fan Y., Wu J., Yao W. Analysis of the Mechanical Properties of Cured Sludge by Alkaline Excitation of Phosphogypsum. Buildings. 2024;14:646. https://doi.org/10.3390/buildings14030646
23. Levickaya K., Alfimova N., Nikulin I., Kozhukhova N., Buryanov A. The Use of Phosphogypsum as a Source of Raw Materials for Gypsum-Based Materials. Resources. 2024;13:69. https://doi.org/10.3390/resources13050069
24. Pyagai I., Zubkova O., Babykin R., Toropchina M., Fediuk R. Influence of Impurities on the Process of Obtaining Calcium Carbonate during the Processing of Phosphogypsum. Materials. 2022;15:4335. https://doi.org/10.3390/ma15124335
25. Chen Y., Fan X., Zhao B., Zhang L. Numerical Simulation of Pre-Reduction for a New Process of Acid Production from Phosphogypsum by Gas Sulfur Reduction. Processes. 2023;11:972. https://doi.org/10.3390/pr11030972
26. Kang C.-U., Ji S.-W., Jo H. Recycling of Industrial Waste Gypsum Using Mineral Carbonation. Sustainability. 2022;14:4436. https://doi.org/10.3390/su14084436
27. Zhou Q., Liao J., Liao C., Zhao B. Phase Equilibrium Study of Rare Earth Oxide–Fluoride Salt System: A Review. Metals. 2024;14:314. https://doi.org/10.3390/met14030314
28. Han J., Wang Y., Liu R. et al. Theoretical and experimental investigation of Xenotime-type rare earth phosphate REPO4, (RE = Lu, Yb, Er, Y and Sc) for potential environmental barrier coating applications. Sci Rep. 2020;10:13681. https://doi.org/10.1038/s41598-020-70648-0
29. Sokolov I.V., Antipin Y.G., Rozhkov A.A., Solomein Y.M. Environmental geotechnology for low-grade ore mining with the creation of conditions for the concurrent disposal of mining waste. Zapiski Gornogo instituta [Journal of Mining Institute], 2023;260:289-296. https://doi.org/10.31897/PMI.2023.21
30. Yang Y., Zhang X., Li L., Wei T., Li K. Metastable Dissolution Regularity of Nd3+ in Na2CO3 Solution and Mechanism. ACS Omega. 2019;4:9160-9168). https://doi.org/10.1021/acsomega.9b00453
31. Farkhutdinov I.M., Khayrullin R.R., Soktoev B.R., Zlobina A.N., Chesalova E.I., Farkhutdinov A.M., Tkachev A.V. Uranium in man-made carbonates on the territory of Ufa. Zapiski Gornogo instituta [Journal of Mining Institute], 2023;260:226-237. (In Russ.) https://doi.org/10.31897/PMI.2023.4
32. Chernysh Y., Chubur V., Ablieieva I., Skvortsova P., Yakhnenko O., Skydanenko M., Plyatsuk L., Roubík H. Soil Contamination by Heavy Metals and Radionuclides and Related Bioremediation Techniques: A Review. Soil Syst. 2024;8:36. https://doi.org/10.3390/soilsystems8020036
33. Cheremisina O., Ponomareva M., Sergeev V., Mashukova Y., Balandinsky D. Extraction of Rare Earth Metals by Solid-Phase Extractants from Phosphoric Acid Solution. Metals. 2021;11:991. https://doi.org/10.3390/met11060991
34. Lobacheva O.L. Ion Flotation of Ytterbium Water-Salt Systems - An Innovative Aspect of the Modern Industry. Water. 2021;13:3493. https://doi.org/10.3390/w13243493
35. Cheremisina O.V., Ponomareva M.A., Molotilova A.Y., Mashukova Y.A., Soloviev M.A. Sorption purification of acid storage facility water from iron and titanium on organic polymeric materials. Zapiski Gornogo instituta [Journal of Mining Institute], 2023;264:971-980. (In Russ.) https://doi.org/10.31897/PMI.2023.28