DOI: 10.18503/1995-2732-2025-23-2-50-60
Abstract
Problem Statement (Relevance). In 2021, Chepetsky Mechanical Plant JSC mastered the magnesiothermal technology for producing sponge zirconium. Sponge zirconium is widely used in the nuclear power industry as a structural material for the production of nuclear fuel for domestic and foreign reactors. The development of production provides for increasing the competitiveness of domestic sponge zirconium in the world market and ensuring the independence of nuclear fuel production from foreign suppliers. Objectives. In order to increase competitiveness and reduce import dependence, the article proposes to increase the efficiency of the magnesiothermal technology for producing sponge zirconium by increasing equipment productivity, reducing production costs, and improving the quality of the finished product. Methods used. To achieve this goal, it is proposed to use the experience of improving the magnesiothermal technology for producing sponge titanium. An analysis of the magnesiothermal technology for producing sponge titanium and directions for increasing its efficiency was carried out. The key technological stage is identified such as the vacuum separation process, which is considered as the limiting stage of the magnesiothermal technology for producing sponge titanium. Its improvement is based on a set of developments that ensured the intensification of vacuum separation, as well as the combined intensification of the reduction and vacuum separation processes. As a result of the development implementation, the productivity of the reduction and vacuum separation devices increased, energy costs decreased, and the quality of sponge titanium improved. A comparative analysis of the regularities of the processes of vacuum separation of sponge titanium and zirconium was carried out in order to assess the possibility of using previously completed developments to improve the magnesiothermal technology for producing zirconium sponge. Originality. General regularities of the processes of vacuum separation of titanium and zirconium sponges were established. Result. Based on the general regularities of the processes, general trends in the development of magnesiothermal technologies for producing titanium and zirconium sponge were formulated. Practical Relevance. A set of developments of magnesiothermal technology for obtaining sponge titanium is proposed, the use of which will increase the efficiency of magnesiothermal technology for obtaining sponge zirconium, which will contribute to increasing the competitiveness of domestic sponge zirconium on the world market and ensuring the independence of nuclear fuel production from foreign supplies.
Keywords
magnesiothermal technologies, sponge titanium, sponge zirconium, vacuum separation
For citation
Kirin Yu.P. Trends in the Development of Magnesiothermal Technologies for Producing Titanium and Zirconium Sponge. Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova [Vestnik of Nosov Magnitogorsk State Technical University]. 2025, vol. 23, no. 2, pp. 50-60. https://doi.org/10.18503/1995-2732-2025-23-2-50-60
1. Tarasov A.V. Metallurgiya titana [Metallurgy of titanium]. Moscow: IKC Akademkniga, 2003, 328 p. (In Russ.)
2. Baryshnikov N.V., Geger V.E., Denisova N.D., Kazain A.A., Kozhemyakin V.A., Nekhamkin L.G., Rodyakin V.V., Tsylov Yu.A. Metallurgiya tsirkoniya i gafniya [Metallurgy of zirconium and hafnium]. Moscow: Metallurgiya, 1979, 208 p. (In Russ.)
3. Drobot D.V., Melnikov D.L., Detkov P.G., Nechaev V.N. Magnietermiya redkih metallov i ih splavov [Magnetothermy of rare metals and their alloys]. Solikamsk: Solikamskiy magnieviy zavod, 2021, 172 p. (In Russ.)
4. Rosatom has made a zirconium breakthrough. Nezavisimaya gazeta [Independent Newspaper]. Available: https://www.ng.ru/economics/2021-10-05/100_175205102021.html (Accessed April 23, 2024).
5. The new zirconium production technology will increase the export of nuclear fuel. Strana Rosatom [A country Rosatom]. Available: https://strana-rosatom.ru/2021/10/08/novaya-tehnologiya-polucheniya-cirkoniya/ (Accessed April 23, 2024).
6. Kirin Yu.P., Zatonskiy A.V., Bekker V.F. et al. Modern directions of improvement and development of sponge titanium production. Titan [Titanium], 2003;(2(13)):11-16. (In Russ.)
7. Kirin Yu.P., Bekker V.F., Zatonskij A.V. Some results of improving the process of obtaining sponge titanium. Tsvetnye metally [Non-ferrous metals], 2009;(12):91-94. (In Russ.)
8. Lupinos S.M., Grishchenko S.B., Prutckov D.V. et al. Will titanium become cheaper tomorrow? On the prospects of developing a continuous technology for magneto-thermal titanium production. Titan [Titanium], 2015;(3(49)):14-21. (In Russ.)
9. Listopad D.A. Improvement of the magneto-thermal process for obtaining sponge titanium in order to reduce the intake of impurities. Tekhnologicheskiy audit i rezervy proizvodstva [Technology audit and production reserves], 2012;(3/1(5))/:13-14. (In Russ.)
10. Petrova L.G., Lysak V.V., Malkova E.V. Assessment of the titanium market in the current geopolitical environment. Problemy ekspertizy v avtomobilno-dorozhnoy otrasli [Problems of expertise in the automotive and road industry], 2022;(4(5)):18-30. (In Russ.)
11. Mastushkin M.Yu., Kusakina Yu.N. Solving the problem of transition to a new model of production of high-tech products (using the example of titanium alloys). Mezhdunarodniy nauchno-issledovatelskiy zhurnal [International Scientific Research Journal], 2021;(3(105)):156-159. (In Russ.)
12. Garmata V.A., Petrunko A.N., Galitskiy N.V., Olesov Yu.G., Sandler R.A. Titan [Titanium]. Moscow: Metallurgiya, 1983, 559 p. (In Russ.)
13. Reznichenko V.A., Ustinov V.S., Karyazin I.A., Khalimov F.B. Khimicheskaya tekhnologiya titana [Chemical technology of titanium]. Moscow: Nauka, 1983, 245 p. (In Russ.)
14. Rodyakin V.V., Geger V.E., Skrypnyuk V.M. Magnietermicheskoe proizvodstvo gubchatogo titana [Magnetothermal production of sponge titanium]. Moscow: Metallurgiya, 1971, 216 p. (In Russ.)
15. Aleksandrovskiy S.V., Titarenko A.I., Cherepanova E.A. Povedenie kisloroda pri proizvodstve gubchatogo titana [The behavior of oxygen in the production of sponge titanium]. Moscow: Tsvetmet, 1989, Iss.1, 52 p. (In Russ.)
16. Kirin Yu.P., Bekker V.F., Zatonskiy A.V. Sovmestnoe proektirovanie tekhnologii i sistemy upravleniya vakuumnoj separatsiey gubchatogo titana: monografiya [Joint design of technology and control system for vacuum separation of sponge titanium: monograph]. Perm: PNRPU, 2008, 124 p. (In Russ.)
17. Zelikman A.N., Korshunov B.G. Metallurgiya redkih metallov: uchebnik dlya vuzov po specialnosti «Metallurgiya tsvetnyh metallov» [Metallurgy of rare metals: a textbook for universities specializing in Metallurgy of non-ferrous metals]. Moscow: Metallurgiya, 1991, 432 p. (In Russ.)
18. Kirin Yu.P., Bilfeld N.V., Tikhonov V.A. Robust adjustment of the temperature controller of the sponge titanium vacuum separation process. Promyshlennye ASU i kontrollery [Industrial automated control systems and controllers], 2019;(6):3-10. (In Russ.) DOI: 10.25791/asu.06.2019.676.
19. Kirin Yu.P., Tikhonov V.A., Angelher A.Yu. Application of drying theory methods for the study and control of heat and mass transfer during vacuum cleaning of sponge titanium from magnesium and magnesium chloride. Vestnik PNIPU. Khimicheskaya tekhnologiya i biotekhnologiya [Bulletin of PNRPU. Chemical technology and biotechnology], 2021; (4):17-28. DOI: 10.15593/2224-9400/2021.4.02. (In Russ.)
20. Kirin Yu.P., Zatonskiy A.V., Bekker V.F et al. Criteria for the end of the process of vacuum separation of sponge titanium. Avtomatizatsiya i sovremennye tekhnologii [Automation and modern technologies]. 2008;(6):6-9. (In Russ.)
21. Kirin Yu.P., Kraev S.L. Control of vacuum separation of sponge titanium in automated process control systems. Pribory i sistemy. Upravlenie, kontrol, diagnostika [Devices and systems. Management, monitoring, diagnostics], 2015;(2):58-63. (In Russ.)
22. Kirin Yu.P., Kraev S.L. Decision support in the capacitor management of the sponge titanium vacuum separation apparatus. Vestnik Kostromskogo gosudarstvennogo universiteta im. N.A. Nekrasova [Bulletin of Kostroma State University named after N.A. Nekrasov], 2013;(1):29-32. (In Russ.)
23. Kirin Yu.P., Kiryanov V.V. Improvement of condenser control of the sponge titanium vacuum separation apparatus. Noviy universitet [New university], 2015;(3-4):26-30. (In Russ.)
24. Kirin Yu.P. Sposob vakuumnoy separatsii gubchatogo titana [The method of vacuum separation of spongy titanium]. Patent RF, No. 2070593, 1996.
25. Kirin Yu.P. Sposob vakuumnoy separatsii gubchatogo titana [The method of vacuum separation of spongy titanium]. Patent RF, No. 2061774, 1996.
26. Kirin Yu.P., Zatonskiy A.V., Bekker V.F. et al. Joint development of technology and control system for vacuum separation of sponge titanium. Pribory i sistemy. Upravlenie, kontrol, diagnostika [Devices and systems. Management, monitoring, diagnostics], 2007;(9):7-10. (In Russ.)
27. Nemchinov S.M., Tihonov V.A., Kirin Yu.P., Kiryanov V.V. Energy-saving modes of vacuum separation of sponge titanium. Molodezhnaya nauka v razvitii regionov: materialy 4-y Vseros. konf. studentov i molodyh uchenyh [Youth science in the development of regions. Proceedings of the 4th All-Russian Conference of Students and Young Scientists]. Perm: Bereznikovsky branch of Perm National Research Polytechnic University, 2014, pp. 213-216. (In Russ.)
28. Kirin Yu.P., Kiryanov V.V., Tikhonov V.A. Low-temperature vacuum separation of sponge titanium. Nauchno tekhnicheskiy vestnik Povolzhya [Scientific and Technical Bulletin of the Volga region], 2014;(5):227-229. (In Russ.)
29. Kirin Yu.P., Bekker V.F., Zatonskiy A.V. Information support for the control of the thermal regime of the condenser in the production of sponge titanium. Vestnik Saratovskogo gosudarstvennogo tekhnicheskogo universiteta [Bulletin of the Saratov State Technical University], 2009;(1(37)):84-86. (In Russ.)