ISSN 1995-2732 (Print), 2412-9003 (Online) УДК 620.186 DOI: 10.18503/1995-2732-2023-21-3-78-88

ПОЛУЧЕНИЕ РЕОЛОГИЧЕСКИХ МОДЕЛЕЙ АЛЮМИНИЕВОГО СПЛАВА RS-356 ПРИ РАЗЛИЧНЫХ РЕЖИМАХ ДЕФОРМАЦИИ

Во Фан Тхань Дат, Петров П.А., Бурлаков И.А., Фам Ван Нгок, Нгуен Хань Тоан, Гневашев А.А.

Московский политехнический университет, Москва, Россия

Аннотация. В статье приведены результаты сравнительного анализа применения реологических моделей с 5-ю и 9-ю коэффициентами, основанных на эмпирической формуле Хензеля-Шпиттеля. Исследуемый материал – новый алюминиевый сплав RS-356 (Al – 92,58; Si – 6,83; Mg – 0,29; Mn – 0,002; Fe – 0,14; Ti – 0,15; Cu – 0,002; Zn - 0,003), заготовки из которого формируются методом селективного лазерного сплавления. Значения неизвестных коэффициентов определены за счет проведения натурного и вычислительного экспериментов – реализован метод решения обратной задачи, а также применения оригинальной методики обработки результатов натурного эксперимента. Натурный эксперимент проведен методом испытания цилиндрических образцов исследуемого сплава RS-356 на сжатие в диапазоне температур от 20 до 450°С при постоянных скоростях деформации 0,001, 0,01 и 0,4 с⁻¹. Образцы диаметром 10 мм и высотой 10 мм получены методом электроэрозии из заготовок сплава RS-356. Вычислительный эксперимент выполнен с применением программного комплекса QFORM, значения неизвестных коэффициентов в реологических моделях – программы Matlab. Точность определения значений коэффициентов в каждой из полученных моделей оценивается по коэффициенту детерминации R^2 . Так, для модели с 9-ю коэффициентами $R^2 = (0.95-0.97)$ в зависимости от температурного интервала. Установленные зависимости с 9-ю коэффициентами для описания реологических свойств сплава RS-356 обеспечивает точность прогнозирования силовых параметров при моделировании процесса пластической деформации в пределах 5% и могут быть применены при компьютерном моделировании операций обработки давлением для температурного интервала 20-450°С и скоростей деформации 0,001, 0,01 и 0,4 с⁻¹.

Ключевые слова: алюминиевый сплав RS-356, испытание на сжатие, реологическая модель Хензеля-Шпиттеля, кривая текучести, модель сопротивления деформации

© Во Фан Тхань Дат, Петров П.А., Бурлаков И.А., Фам Ван Нгок, Нгуен Хань Тоан, Гневашев А.А., 2023

Для цитирования

Получение реологических моделей алюминиевого сплава RS-356 при различных режимах деформации / Во Фан Тхань Дат, Петров П.А., Бурлаков И.А., Фам Ван Нгок, Нгуен Хань Тоан, Гневашев А.А. // Вестник Магнитогорского государственного технического университета им. Г.И. Носова. 2023. Т. 21. №3. С. 78-88. https://doi.org/ 10.18503/1995-2732-2023-21-3-78-88

Контент доступен под лицензией Creative Commons Attribution 4.0 License. The content is available under Creative Commons Attribution 4.0 License.

OBTAINING RHEOLOGICAL MODELS OF ALUMINUM ALLOY RS-356 UNDER VARIOUS DEFORMATION MODES

Vo Phan Thanh Dat, Petrov P.A., Burlakov I.A., Pham Van Ngoc, Nguyen Khanh Toan, Gnevashev A.A.

Moscow Polytechnic University, Moscow, Russia

Abstract. The paper presents a comparative analysis of the use of rheological models with 5 and 9 coefficients based on the Hensel-Spittel empirical formula. The material under study is a new aluminum alloy, RS-356 (Al – 92.58; Si – 6.83; Mg – 0.29; Mn – 0.002; Fe – 0.14; Ti – 0.15; Cu – 0.002; Zn – 0.003), workpieces from which are formed by selective laser melting. The values of the unknown coefficients were determined by carrying out full-scale and computational experiments, namely a method for solving the inverse problem, as well as using an original method for processing the results of the full-scale experiment. The full-scale experiment was carried out by testing cylindrical specimens of alloy RS-356 under study for compression in the temperature range from 20 to 450 °C at constant strain rates of 0.001, 0.01 and 0.4 s⁻¹. The specimens with a diameter of 10 mm and a height of 10 mm were produced by electroerosion from workpieces of the RS-356 alloy. The computational experiment was carried out using the QFORM software package; values of unknown coefficients in rheological models – applying Matlab software. Accuracy of the values of the coefficients, $R^2 = (0.95-0.97)$ depending on the temperature interval. The established dependencies with 9 coefficients for describing the rheological properties of RS-356 provide accuracy of predicting force parameters, when modeling the plastic deformation process within 5% and can be used in computer modeling of metal forming operations for a temperature range of 20-450 °C and strain rates of 0.001, 0.01 and 0.4 s⁻¹.

Keywords: RS-356 aluminum alloy, compression test, Hensel-Spittel rheological model, yield curve, deformation stress model

For citation

Vo Phan Thanh Dat, Petrov P.A., Burlakov I.A., Pham Van Ngoc, Nguyen Khanh Toan, Gnevashev A.A. Obtaining Rheological Models of Aluminum Alloy RS-356 under Various Deformation Modes. *Vestnik Magnitogorskogo Gosudarstvennogo Tekhnicheskogo Universiteta im. G.I. Nosova* [Vestnik of Nosov Magnitogorsk State Technical University]. 2023, vol. 21, no. 3, pp. 78-88. https://doi.org/10.18503/1995-2732-2023-21-3-78-88

Введение

Обработка алюминиевых сплавов под давлением может быть сложной операцией из-за ряда факторов. Высоколегированные алюминиевые сплавы склонны при деформации к трещинообразованию вследствие низкой пластичности. Образованию дефектов в виде трещин способствует наличие таких примесей, как кислород, водород, железо, кремний [1]. Кроме того, температурные условия и давление, используемые при обработке алюминиевых сплавов, должны быть тщательно контролируемы, чтобы обеспечить желаемую микроструктуру и механические свойства. С целью преодоления этих проблем используются различные технические приемы, такие как использование добавок, предварительные подготовительные процессы и точный контроль параметров обработки [2]. Также может использоваться охлаждение во время обработки для уменьшения температуры металла и замедления реакций, которые могут вызывать повреждения. В зависимости от применяемых технологий и условий результаты обработки могут значительно различаться. Поэтому важно выбирать технологические параметры, обеспечивающие получение желаемых свойств и качества продукта. Обеспечение таких параметров возможно только при наличии реологических зависимостей материалов, позволяющих максимально точно моделировать процесс формообразования заготовок [3-5].

Целью настоящей статьи является получение реологических моделей алюминиевого сплава RS-356 (AlSi7Mg) с 5-ю и 9-ю неизвестными коэффициентами и определение рациональной области их использования.

Материалы и методы исследования

В качестве исследуемого материала рассматривается порошковый алюминиевый сплав RS-356. (химический состав, % (вес): Al – 92,58; Si – 6,83; Mg – 0,29; Mn – 0,002; Fe – 0,14; Ti – 0,15; Cu – 0,002; Zn – 0,003 [6]), обладающий хорошими литейными свойствами и высокой производительностью при селективном лазерном сплавлении; является аналогом литейных алю-

миниевых сплавов системы Al-Si.

Сплав RS-356, разработанный компанией ОК «РУСАЛ», производится в соответствии с ТУ 24.42.00-002-44669951-2019; исходное состояние поставки – порошок, предназначенный для аддитивного производства по технологии аддитивного лазерного сплавления (SLM).

Для получения реологической модели были применены цилиндрические образцы диаметром и высотой 10 мм, изготовленные методом электроэрозии из заготовок сплава RS-356, полученных по технологии SLM.

Испытания на сжатие провели с помощью универсальных испытательных машин моделей LFM250 (при температуре 20°С) и LFM50 (при температурах 300, 400 и 450°С). При проведении испытаний технологическая смазка не используется; фактор трения, в случае применения при компьютерном моделировании модели трения А.Н. Леванова, принимается равным 0,8-1,0. Допущение о максимальном трении на контактной поверхности принимается для сохранения граничных температурных условий в каждом испытании; добавление при температуре выше 20°С на контактную поверхность смазки приводит к нарушению граничных температурных условий. На этапе обработки результатов испытаний учитывается влияние контактного трения на сопротивление деформации в соответствии с рекомендациями, представленными в работах [7, 8]. Деформация осуществлялась со скоростями 0,001, 0,01 и 0,4 с⁻¹. Постоянство скорости деформации обеспечивалось путем управления скоростью перемещения траверсы испытательной машины в соответствии с формулой [9]:

$$S_{i} = h_{o} - \exp(-\dot{\varepsilon}_{i} \cdot t) \cdot h_{o}, \qquad (1)$$

где S_i – перемещение траверсы испытательной машины, мм; $\dot{\varepsilon}$ – скорость деформации, с⁻¹; t – время, с; h_o – исходная высота образца исследуемого материала, мм.

Более подробные сведения о методике обработки экспериментальных данных об испытаниях на сжатие представлены в работе [9].

Полученные результаты и их обсуждение

Полученные испытанием на сжатие зависимости напряжения текучести от величины и скорости деформации при различных температурах показаны на **рис. 1** [9].

- Рис. 1. Экспериментальные зависимости напряжения текучести сплава RS-356 от деформации при различных температурно-скоростных режимах деформации: 1 20°С; 2 300°С; 3 400°С; 4 450°С
- Fig. 1. Experimental dependences between yield stress of RS-356 and deformation at various temperatures and rates of strain: 1 is 20°C; 2 is 300°C; 3 is 400°C; 4 is 450°C

 $-0,001 \text{ c}^{-1};$ $-0,01 \text{ c}^{-1};$ $-0,01 \text{ c}^{-1};$ $-0,4 \text{ c}^{-1}$

При температуре испытания 20°С наблюдалось образование трещин на поверхности сжимаемых образцов при достижении накопленной (логарифмической) деформации $\varepsilon = 0,45 - 0,48$ (табл. 1). В диапазоне температур от 300 до 450°С деформация ε образцов сжатием на величину 0,31-0,62 не приводит к появлению трещин. Учитывая особенности пластического деформирования сплава RS-356, необходимость создания реологической модели материала в широком диапазоне значений температуры, а также ярко выраженный горизонтальный участок на кривых текучести (см. **рис. 1**), кривые текучести строили до $\varepsilon = 0,48$. Для некоторых образцов (см. табл. 1) применяли экстраполяцию до большего значения деформации.

В табл. 1 показан внешний вид (форма боковой поверхности) образцов порошкового алюминиевого сплава RS-356 после сжатия в различных температурно-скоростных режимах.

В практике построения математической модели сопротивления деформации для аппроксимации экспериментальных кривых «напряжение текучести – деформация», отражающих зависимость напряжения текучести от термомеханических параметров – температуры, деформации и скорости деформации, применяют одну из математических зависимостей, например, в виде степенной или экспоненциальной функции либо в виде зависимости, основанной на методе термомеханических коэффициентов [10].

Номер образца	Фото образца после испытания на сжатие	Температура образца, °С	Величина деформации є	Скорость деформации έ, c ⁻¹
1		20	0,48	0,001
2		20	0,45	0,01
3		20	0,48	0,4
4		300	0,56	0,001
5		300	0,46	0,01
6		300	0,31	0,4
7		400	0,46	0,001
8		400	0,34	0,01
9	0	400	0,48	0,4
10	A.	450	0,63	0,001
11		450	0,62	0,01
12	0.5	450	0,54	0,4

Таблица 1. Внешний вид образцов порошкового алюминиевого сплава RS-356 после сжатия T a ble 1. Appearance of RS-356 powder aluminum alloy specimens after compression

В первую очередь рассмотрена эмпирическая модель Хензеля-Шпиттеля с 9-ю неизвестными коэффициентами, определяющая зависимость напряжения текучести от термомеханических параметров. Математическое представление данной модели может быть выражено формулой (2) [11]. Неизвестные коэффициенты определяются из решения задачи регрессии с применением результатов проведенных экспериментальных испытаний (см. рис. 1 и табл. 1):

$$\sigma_{i} = A \exp(m_{1}T) T^{m_{3}} \varepsilon_{i}^{m_{2}} \exp(m_{4}/\varepsilon_{i}) (1+\varepsilon_{i})^{m_{3}T} \times \exp(m_{7}\varepsilon_{i}) \dot{\varepsilon}_{i}^{m_{3}} \dot{\varepsilon}_{i}^{m_{3}T},$$
(2)

где *A*, *m*₁, *m*₂, *m*₃, *m*₄, *m*₅, *m*₇, *m*₈, *m*₉ – неизвестные коэффициенты.

Для решения задачи регрессии составлена программа в среде Matlab, в которой использована функция «lsqcurvefit» из библиотеки Matlab, реализующая метод Левенберга-Маркардта [12]. Данный метод обеспечивает поиск значений коэффициентов, которые представлены в **табл. 2**.

Тип деформации	A	m_1	<i>m</i> ₂	<i>m</i> ₃	m_4	<i>m</i> ₅	m_7	m_8	<i>m</i> 9
20-300°C	214,042	-0,0021	-0,3945	0,003	-0,0994	-0,0028	0,3474	6,77·10 ⁻⁵	0,0501
400-450°C	10,597	-0,0086	-0,082	0,3438	-0,0204	-0,0026	0,8587	-0,0006	0,8813

Таблица 2. Значения коэффициентов в формуле (2) для алюминиевого сплава RS-356 [12] T a ble 2. Coefficients in formula (2) for aluminum alloy RS-356 [12]

Сравнение результатов расчета напряжений текучести по формуле (2) с экспериментальными данными показано на **рис. 2**. В качестве критерия оценки точности модели выбрана величина:

- средней абсолютной ошибки S:

$$S = \frac{1}{n} \sum_{i=1}^{n} \frac{\left|\sigma_{i} - \sigma_{i}\right|}{\left|\sigma_{i}\right|} \cdot 100\%; \qquad (3)$$

– коэффициента детерминации R^2 :

$$SE = \frac{1}{n} \sum_{i=1}^{n} (\sigma_i - \overline{\sigma}_i)^2;$$

$$SE_{\text{сред}} = \frac{1}{n} \sum_{i=1}^{n} (\sigma_i - \sigma_{\text{сред}})^2;$$

$$R^2 = 1 - \frac{SE}{SE_{\text{сред}}},$$
(4)

где n – объем выборки; $\sigma_i - k$ -е экспериментальное значение напряжения текучести, полученное в эксперименте при деформации ε_{ik} и фиксированном значении скорости деформации $\dot{\varepsilon}_i$ и температуры T_i ; $\bar{\sigma}_i - k$ -е расчетное значение напряжения текучести, полученное по формуле (2) с учетом значений коэффициентов (см. табл. 2); $\sigma_{сред}$ – среднее арифметическое значение напряжения текучести по полученным в эксперименте данным.

Второй показатель для оценки качества математической модели представлен формулой (4) и позволяет оценить, какая доля дисперсии может быть предсказана моделью в известных экспериментальных данных. Считается, что при R^2 , принимающем значение от 0,8 до 1,0, математическая модель хорошего качества.

Сравнительный анализ результатов расчета и эксперимента позволил оценить значения ошибки *S* для моделей с 9-ю неизвестными коэффициентами (см. **рис.** 2). В среднем ошибка *S* в диапазоне температур 20-300°С не превышает 6,9%, в диапазоне температур 400-450°С – 9,7%. Значения коэффициента детерминации R^2 в диапазоне температур 20-300°С – 0,97, в диапазоне температур 400-450°С – 0,95. Полученная модель позволяет достаточно точно прогнозировать возникающие напряжения в зависимости от скорости и величины деформации (см. **рис. 2**).

В качестве второй математической модели была выбрана модель Хензеля-Шпиттеля с 5-ю неизвестными коэффициентами, которая может быть выражена формулой [11]

$$\sigma_i = A\varepsilon_i^{m_2} \exp(-m_4\varepsilon_i)\dot{\varepsilon}_i^{m_3} \exp(-m_1T), \quad (5)$$

где A, m_1, m_2, m_3, m_4 – неизвестные коэффициенты.

Формула (5) решается аналогично формуле (2). Найденные коэффициенты приведены в **табл. 3**.

Результаты эксперимента и расчета моделей с 5-ю неизвестными коэффициентами показаны на **рис. 3**. В среднем ошибка *S* в диапазоне температур 20-300°С не превышает 14,2%, в диапазоне температур 400-450°С – 11,7%. Значения коэффициента детерминации R^2 в диапазоне температур 20-300°С – 0,96, в диапазоне температур 400-450°С – 0,92. Эти результаты показывают, что полученная модель обеспечивает достаточно хорошую точность прогнозирования силовых параметров.

Сравнение кривых текучести, построенных по результатам расчетов напряжения текучести по формулам (2) и (5), с учетом значений коэффициентов (см. табл. 2 и 3), представлено на рис. 4.

В диапазоне температур 20-450°С формулы (2) и (5) позволяют получать достаточно точные значения коэффициента детерминации R^2 расчетных напряжений текучести, который достигает 0,92-0,97. Однако результаты моделирования с использованием формулы (5) имеют более высокие значения средней абсолютной ошибки S (11,7-14,2%).

- Рис. 2. Сравнение экспериментальных и расчетных значений напряжения текучести при сжатии образцов с различными скоростьями деформации:
 - данные эксперимента (1 при 20°С; 2 при 300°С; 3 при 400°С; 4 при 450°С)
 - результаты расчета по формуле (2) при 20°С
 - результаты расчета по формуле (2) при 300°C
 - результаты расчета по формуле (2) при 400°С
 - результаты расчета по формуле (2) при 450°С
- Fig. 2. Comparison of experimental and calculated values of yield stress during compression of the specimens at various strain rates:
 - experimental data (1 is at 20°C; 2 is at 300°C; 3 is at 400°C; 4 is at 450°C)
 - calculation results according to formula (2) at 20°C
 - calculation results according to formula (2) at 300°C
 - calculation results according to formula (2) at 400°C
 - calculation results according to formula (2) at 450°C

Таблица 3.	Значения коэффициентов в (формуле (5) для	алюминиевого	сплава RS-356
Table 3.	Coefficients in formula (5) for	aluminum alloy	RS-356	

Тип деформации	A	m_1	<i>m</i> ₂	<i>m</i> ₃	m_4
20-300°C	3021,0675	0,0025	0,9756	0,0086	3,3721
400-450°C	1832,3114	0,0056	0,4317	0,0966	1,7197

- Рис. 3. Сравнение экспериментальных и расчетных значений напряжения текучести при сжатии образцов с различными скоростьями деформации:
 - данные эксперимента (1 при 20°С; 2 при 300°С; 3 при 400°С; 4 при 450°С)
 - --- результаты расчета по формуле (2) при 20°C
 - --- результаты расчета по формуле (2) при 300°С
 - --- результаты расчета по формуле (2) при 400°С
 - --- результаты расчета по формуле (2) при 450°С

Fig. 3. Comparison of experimental and calculated values of yield stress during compression of the specimens at various strain rates:

- experimental data (1 is at 20°C; 2 is at 300°C; 3 is at 400°C; 4 is at 450°C)
- --- calculation results according to formula (2) at 20°C
- --- calculation results according to formula (2) at 300°C
- --- calculation results according to formula (2) at 400°C
- --- calculation results according to formula (2) at 450°C

Рис. 4. Сравнение экспериментальных и расчетных значений напряжения текучести при сжатии образцов с различными скоростьями деформации:

- данные эксперимента (1 – при 20°С; 2 – при 300°С; 3 – при 400°С; 4 – при 450°С);

расчетная кривая по формуле (2);

--- расчетная кривая по формуле (5) (— при 20°С; — при 300°С; — при 400°С; — при 450°С)

Fig. 4. Comparison of experimental and calculated values of yield stress during compression

of the specimens at various strain rates:

- experimental data (1 is at 20°C; 2 is at 300°C; 3 is at 400°C; 4 is at 450°C);

calculated curve according to formula (2);

--- calculated curve according to formula (5) (- at 20°C; - at 300°C; - at 400°C; - at 450°C)

Таким образом, при моделировании процессов формообразования заготовок из порошкового алюминиевого сплава RS-356 в равной степени возможно применение математической модели напряжения текучести с 9-ю и 5-ю неизвестными коэффициентами (формулы (2) и (5)). Применение модели с 9-ю неизвестными коэффициентами позволяет повысить точность аппроксимации экспериментальных данных – ошибка не превышает 9,7%.

Подробнее методика постановки виртуального эксперимента, направленного на верификацию математической модели деформируемого материала, представлена в работе [9]. В качестве критерия точности определения математической модели материала выбрана формула оценки средней абсолютной ошибки, записанная в виде [12]

$$\delta = \left| \frac{P_{FEM} - P_{\Im KC\Pi}}{P_{\Im KC\Pi}} \cdot 100\% \right| \le 5,0\%, \tag{6}$$

где δ – средняя абсолютная ошибка; P_{FEM} – сила деформирования по результатам расчета в программе QForm; $P_{_{3KCI}}$ – сила деформирования, измеренная в эксперименте.

На рис. 5 представлены результаты виртуального и натурного экспериментов при температуре 20 и 450°С. В представленном примере

видно, что применение реологической модели с 9-ю коэффициентами обеспечивает более высокую точность расчета сил деформирования.

Анализ значений сил деформирования при сжатии заготовки из сплава RS-356 при температуре 20 и 450°С (**рис. 6**) показал, что применение реологической модели материала, основанной на формуле (2), обеспечивает погрешность расчета не более 4,0% (при 20°С) и не более 5,0% (при 450°С), что соответствует условию формулы (7). При использовании модели по формуле (5) погрешность расчета превышает 10%.

- Рис. 5. Сравнение графиков «сила деформирования ход инструмента» при моделировании сжатия образцов сплава RS-356 при температурах 20°С (а, б) и 450°С (в, г) с применением модели материала: а, в – формула (2); б, г – формула (5); 1 – данные эксперимента; 2 – расчетные данные
- Fig. 5. Comparison of the diagrams of "deformation force tool stroke", when modeling compression of the RS356 alloy specimens at temperatures of 20°C (a, 6) and 450°C (B, Γ) using the material model: (a), (B) is formula (2); (6), (Γ) is formula (5); 1 is experimental data; 2 is calculated data

1 is a model – formula (5) with 5 coefficients; 2 is a model – formula (2) with 9 coefficients

Во Фан Тхань Дат, Петров П.А., Бурлаков И.А., Фам Ван Нгок, Нгуен Хань Тоан, Гневашев А.А.

Заключение

1. Найдены реологические модели порошкового алюминиевого сплава RS-356 на основе эмпирической модели, предложенной Хензелем и Шпиттелем с 5-ю и 9-ю неизвестными коэффициентами для температурного интервала 20-450°С и скоростей деформации 0,001, 0,01 и 0,4 с⁻¹.

2. Установлено, что найденная реологическая модель с 9-ю неизвестными коэффициентами обеспечивает точность прогнозирования силовых параметров при моделировании процесса пластической деформации в пределах 5%, а реологическая модель с 5-ю неизвестными коэффициентами – до 14,2%.

3. Результаты исследования позволяют применить найденные реологические модели для моделирования процессов пластического формообразования порошкового алюминиевого сплава RS-356 в широком диапазоне температурно-скоростных режимов.

Список источников

- Металловедение алюминия и его сплавов: Справ. изд. / Беляев А.И., Бочвар О.С., Буйнов Н.Н. и др. М.: Металлургия, 1983. 280 с.
- Tusar R.S., Ramanuj K., Isham P., Ashok K.S., Amlana P., Rabin K.D. Machinability behavior of Aluminium Alloys: A Brief Study // Materialstoday: Proceedings. 2019, vol. 18, part 7, pp. 5069-5075.
- Управление процессами формообразования заготовок из титановых сплавов (на примере сплава OT4-1) с использованием моделирования реологии и режимов деформирования / Петров П.А., Хань Тоан Нгуен, Бурлаков И.А., Сухоруков Р.Ю. // Проблемы машиностроения и надежности машин. 2021. №6. С. 88-95. DOI: 10.31857/S02357119210 60134
- Szeliga D., Gaward E., Pietrzyk M. Inverse analysis for identification of rheological and friction models in metal forming // Computer methods in applied mechanics and engineering. 2006, vol. 195, pp. 6778-6798.
- Смирнов А.С. Разработка методики идентификации определяющих соотношений для металлов при больших высокотемпературных пластических деформациях: дис. ... канд. техн. наук: 01.02.04. Екатеринбург, 2008. 243 с.
- Liye Liang, Xuexin Pan, Guilan Wang, Haiou Zhang, Hao Zhang. Microstructure and mechanical properties of selective laser melted AlSi7Mg // Journal of Physics: Conference Series. 1939 012041, 2021, pp. 1-6.
- Charpentier P.L. Characterization and Modelling of High Temperature Flow Behavior of Aluminum Alloy 2024 / P.L. Charpentier, B.C. Stone, S.C. Ernst, J.R. Thomas // Met. Trans. A. 1986, vol. 17, pp. 2227.
- 8. Петров П.А. Методика исследования сопротивления деформации при двухэтапном монотонном

нагружении // Известия Тульского государственного университета. Технические науки. 2019. №5. С. 157-174.

- Построение кривых текучести алюминиевого сплава RS-356 на основе натурного и вычислительного эксперимента / Петров П.А., Фам Ван Нгок, Бурлаков И.А., Матвеев А.Г., Сапрыкин Б.Ю., Петров М.А., Во Фан Тхань Дат // Технология легких сплавов. 2023. №1. С. 63-69.
- Зюзин В.И., Бровман М.Я., Мельников А.Ф. Сопротивление деформации сталей при горячей прокатке. М.: Металлургия, 1964. 270 с.
- 11. Хензель А., Шпиттель Т. Расчет энергосиловых параметров в процессах обработки давлением: справочник. М.: Металлургия, 1982. 360 с.
- Marquardt D.W. An algorithm for least-squares estimation of nonlinear parameters // Journal of the Society for Industrial and Applied Mathematics. 1963, vol. 11, no. 2, p. 431.

References

- Belyaev A.I., Bochvar O.S., Buinov N.N. et al. Metallovedenie alyuminiya i ego splavov: Sprav. izd. [Metal science of aluminum and its alloys: Reference book]. Moscow: Metallurgy, 1983, 280 p. (In Russ.)
- Tusar R.S., Ramanuj K., Isham P., Ashok K.S., Amlana P., Rabin K.D. Machinability behavior of Aluminium Alloys: A Brief Study. Materials of Today: Conference Proceedings. 2019;18:5069-5075.
- Petrov P.A., Khanh Nguyen Toan, Burlakov I.A., Sukhorukov R.Yu. Control of forming processes of titanium alloy blanks (using OT4-1 alloy as an example) using rheology modeling and deformation modes. *Problemy mashinostroeniya i nadezhnosti mashin* [Problems of Mechanical Engineering and Reliability of Machines]. 2021;(6):88-95. (In Russ.) DOI: 10.31857/S0235711921060134
- Szeliga D., Gaward E., Pietrzyk M. Inverse analysis for identification of rheological and friction models in metal forming. Computer Methods in Applied Mechanics and Engineering. 2006;195:6778-6798.
- Smirnov A.S. Razrabotka metodiki identifikatsii opredelyayushchikh sootnosheniy dlya metallov pri bolshikh vysokotemperaturnykh plasticheskikh deformatsiyakh: dis. ... kand. tekhn. nauk [Development of a technique for identifying constitutive relations for metals at high high-temperature plastic deformations. PhD thesis]. Yekaterinburg, 2008. 243 p.
- Liye Liang, Xuexin Pan, Guilan Wang, Haiou Zhang, Hao Zhang. Microstructure and mechanical properties of the molten AlSi7Mg selective laser. Journal of Physics: Conference Series. 2021;1939;012041.
- Charpentier P.L., Stone B.C., Ernst S.C., Thomas J.R. Characterization and modelling of high temperature flow behavior of aluminum alloy 2024. Met.Trans. A. 1986;17:2227.
- 8. Petrov P.A. A method for evaluation of the flow stress under two-stage monotonic loading. *Izvestiya*

Tulskogo gosudarstvennogo universiteta. Tekhnicheskie nauki [Izvestiya of Tula State University. Engineering Sciences]. 2019;(5):157-174. (In Russ.)

- Petrov P.A., Pham Ngoc Van, Burlakov I.A., Matveev A.G., Saprykin B.Yu., Petrov M.A., Vo Phan Thanh Dat. Building yield curves of aluminum alloy RS-356 based on a full-scale and computational experiment. *Tekhnologiya legkikh splavov* [Technology of Light Alloys]. 2023;(1):63-69. (In Russ.)
- 10. Zyuzin V.I., Brovman M.Ya., Melnikov A.F. Soprotivlenie deformatsii staley pri goryachey prokatke

[Deformation stress of steels during hot rolling]. Moscow: Metallurgy, 1964, 270 p. (In Russ.)

- Hensel A., Shpittel T. Raschet energosilovykh parametrov v protsessakh obrabotki davleniem: spravochnik [Calculation of force parameters in metal forming processes: Handbook]. Moscow: Metallurgy, 1982, 360 p. (In Russ.)
- Marquardt D.V. An algorithm for least-squares estimation of nonlinear parameters. Journal of the Society of Industrial and Applied Mathematics. 1963;11(2): 431-441.

Поступила 24.05.2023; принята к публикации 03.07.2023; опубликована 25.09.2023 Submitted 24/05/2023; revised 03/07/2023; published 25/09/2023

Во Фан Тхань Дат – аспирант кафедры «Обработка материалов давлением и аддитивные технологии», Московский политехнический университет, Москва, Россия. Email: vodat2996@gmail.com.

Петров Павел Александрович – кандидат технических наук, доцент, доцент кафедры «Обработка материалов давлением и аддитивные технологии», Московский политехнический университет, Москва, Россия. Email: petrov_p@mail.ru.

Бурлаков Игорь Андреевич – доктор технических наук, профессор кафедры «Обработка материалов давлением и аддитивные технологии», Московский политехнический университет, Москва, Россия. Email: iaburlakov@gmail.com.

Фам Ван Нгок – аспирант кафедры «Обработка материалов давлением и аддитивные технологии», Московский политехнический университет, Москва, Россия. Email: nguyenngoc15101994@gmail.com.

Нгуен Хань Тоан – аспирант кафедры «Обработка материалов давлением и аддитивные технологии», Московский политехнический университет, Москва, Россия. Email: tolya.vn229@gmail.com.

Гневашев Андрей Александрович – аспирант кафедры «Обработка материалов давлением и аддитивные технологии», Московский политехнический университет, Москва, Россия, Email: gneandrej@mail.ru.

Vo Phan Thanh Dat – postgraduate student of the Department of Materials Forming and Additive Technologies, Moscow Polytechnic University, Moscow, Russia. Email: vodat2996@gmail.com.

Pavel A. Petrov – PhD (Eng.), Associate Professor of the Department of Materials Forming and Additive Technologies, Moscow Polytechnic University, Moscow, Russia. Email: petrov_p@mail.ru.

Igor A. Burlakov – DrSc (Eng.), Professor of the Department of Materials Forming and Additive Technologies, Moscow Polytechnic University, Moscow, Russia. Email: iaburlakov@gmail.com.

Pham Van Ngoc – postgraduate student of the Department of Materials Forming and Additive Technologies, Moscow Polytechnic University, Moscow, Russia. Email: nguyenngoc15101994@gmail.com.

Nguyen Khanh Toan – postgraduate student of the Department of Materials Forming and Additive Technologies, Moscow Polytechnic University, Moscow, Russia. Email: tolya.vn229@gmail.com.

Andrey A. Gnevashev – postgraduate student of the Department of Materials Forming and Additive Technologies, Moscow Polytechnic University, Moscow, Russia, Email: gneandrej@mail.ru.