ЛИТЕЙНОЕ ПРОИЗВОДСТВО

УДК 621.74

ПРОБЛЕМА СЕРЫ В ЛИТЕЙНЫХ СТАЛЯХ

Колокольцев В.М. 1 , Коток А.П. 2 , Долбилов К.А. 1

1 Магнитогорский государственный технический университет им. Г.И. Носова, Россия

Анномация. Исследовано влияние серы на механические свойства литейных сталей, используемых для изготовления фасонных отливок. Показано, что содержание серы в сталях выше 0,023% приводит к резкому снижению их прочности, ударной вязкости, пластичности, что существенно уменьшает эксплуатационную стойкость отливок. Сделан вывод о необходимости внедрения новых технологий десульфурации сталей в литейном производстве.

Ключевые слова: литейная сталь, дуговая печь, сера, неметаллические включения, механические свойства.

Ввеление

Литейное производство в России является основной заготовительной базой машиностроительного комплекса, и его развитие зависит от темпов развития машиностроения в целом. В отличие от заготовок, полученных обработкой металлов давлением (проката, штамповок и поковок), в отливках все недостатки и особенности плавки и разливки наследуются и затем отражаются на свойствах готовых литых изделий.

Одной из главных проблем в литейных цехах остается использование старых нормативнотехнических документов, в которых содержание вредных примесей в сталях не соответствует нынешним реалиям развития металлургии стального литья. В современных ГОСТах большой металлургии максимальное содержание вредных примесей в стали достигло тысячных долей процентов. Однако основная сложность заключается в том, что в литейных цехах выплавляются небольшие объемы сталей и кардинальное решение вопроса повышения качества за счет внедрения дорогостоящего оборудования, которые используются в большой металлургии (вакууматоры, агрегат печь-ковш и т.п.), практически невозможно. Использование таких агрегатов резко повышает стоимость получаемых отливок и приводит к длительным срокам окупаемости вложений.

Повышение эксплуатационных и механических свойств отливки возможно при условии успешного удаления из металла вредных примесей (кислорода, водорода, серы, фосфора, цветных металлов и т. п.). В значительной степени, качество литья определяется низким содержанием серы в готовом металле.

Согласно исследованиям [1, 2] сера неограниченно растворима в жидком железе и обладает очень малой растворимостью в твёрдом. Предельная растворимость серы в у-железе при температуре 1365° С составляет от 0,04 до 0,05% и со снижением температуры уменьшается (при переходе $\delta \rightarrow \gamma$ – железо в интервале температур 1365–915°С). Переход γ → α – железо приводит к скачкообразному образованию сульфидов, снижению концентрации серы в растворе железа до 0,01%, к дальнейшему снижению её при охлаждении. Избыточная сера в металле, свыше предела растворимости, приводит к такому явлению, как красноломкость (разрушение металла). Особенно сильно это наблюдается в литом состояние (в виде рванин и трещин), так как включения сульфидов выделяются по границам первичных кристаллитов, что ведет к снижению прочности, пластичности, вязкости как самого металла, так и готовых изделий из него (отливок, слитков).

Материал и методика исследований

Исследования проводили на литейных сталях марки 35Л,35ФЛ,35ХМЛ, выплавленных в литейном цехе 3AO «Механо-ремонтный комплекс» ОАО «ММК» в дуговой печи ДСП-6М с основной футеровкой по действующей технологии.

Свойства определяли в термически обработанном состоянии сталей по следующим режимам: Сталь $35\Phi\Pi$ – нормализация (H) 880–890°C, отпуск (O) 620–630°C; Сталь $35\text{ХМ}\Pi$ – H. 860–880°C, О. 620–630°C,; Сталь 35Π – H. 860–880°C, О. 600–620°C.

В программе Excel был произведен статистический анализ плавок сталей на содержание серы

² ЗАО «Механоремонтный комплекс» ОАО «ММК», Россия

в металле по ходу плавки и в изложнице, а также анализ влияния серы на механические свойства стали.

Результаты исследований и их обсуждение

Из **табл. 1** видно, что содержание серы как в период расплавления, так и после доводки стали и выпуска в изложницу незначительно для всех исследуемых сталей и ниже верхнего предела по ГОСТу [3].

Таблица 1
Результаты статистического анализа
плавок стали в ДСП-6М

Марка стали	Количе- ство плавок	Среднее содер- жание серы по расплав- лении, %	Среднее содержа- ние серы в готовой стали, %	Степень удаления серы, %	Среднее время доводки, мин	Скорость удаления серы во время доводки, %/мин *10-3
35Л	62	0,032	0,020	37,5	44,6	0,27
35ФЛ	54	0,030	0,020	33,3	43,2	0,23
35ХМЛ	42	0,029	0,021	27,5	45,3	0,18

На **рис. 1** показано распределение исследованных марок сталей по содержанию серы в готовом металле.

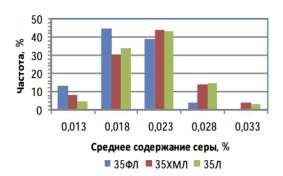


Рис. 1. Распределение плавок сталей по содержанию серы

При выплавке сталей 35Л, 35ХМЛ и 35Л в дуговой электропечи наиболее часто в период расплавления концентрация серы составляет от 0,021 до 0,030% по массе. Такие значения отмечены у более 60% всего количества плавок этих сталей. На долю близких к верхнему пределу ГОСТов содержаний серы 0,040–0,050% приходится около 6%, т.е. в 10 раз меньше, чем для вышеуказанных значений. Наибольший процент плавок (более 73,0%) имеет содержание серы в готовом металле в пределах 0,016–0,025% масс.

В табл. 2-3 приведены значения механических свойств вышеуказанных сталей при различном содержании в них серы.

Таблица 2 Ударная вязкость сталей при различном содержании серы*

		_	_				
Морко отоли	КСU, МДж/м², при содержании серы, %						
Марка стали	0,013	0,023	0,033	0,043			
35ФЛ	0,62	<u>0,56</u> 0,31	0,40	<u>0,31</u>			
33471	0,38	0,31	0,21	0,12			
35ХМЛ	0,59	<u>0,48</u>	<u>0,31</u>	<u>0,28</u>			
OOMINIT	0,35	0,28	0,12	0,07			
35Л	0,50	<u>0,46</u>	<u>0,30</u>	<u>0,24</u>			
3011	0,22	0,17	0,08	0,02			

^{*} Числитель — при температуре испытания +20°C, знаменатель — при -60°C.

Таблица 3
Прочность и относительное удлинение сталей при различном содержании серы

Марка стали	σ _в , МПа, при содержании серы. %				δ, %, при содержании серы. %			
	0,013	0,023	0,033	0,043	0,013	0,023	0,033	0,043
35ФЛ	650	635	610	605	21	20	15	10
35ХМЛ	670	655	630	630	18	16	12	10
35Л	580	570	520	500	23	21	16	14

При этом было установлено, что резкое падение всех свойств сталей, особенно вязкости и пластичности, происходит при содержании серы более 0,023%. В частности, для большинства сталей при увеличении содержания серы с 0,013 до 0,043% ударная вязкость при нормальной температуре испытания падает почти в 2 раза, а при температуре –60°С — больше чем в 3 раза. Влияние серы на ударную вязкость при температуре +20°С показанно на рис. 2.

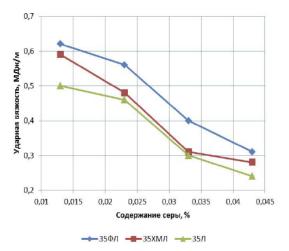


Рис. 2. Влияние содержания серы на ударную вязкость стали при тмпературе +20°C

Такое влияние обусловлено тем, что в металле по границам зерен первичных кристаллов образуются сульфидные и оксисульфидные неметаллические включения, которые уменьшают их спайность и тем самым обеспечивают снижение

ЛИТЕЙНОЕ ПРОИЗВОДСТВО

показателей пластичности и вязкости литого металла. Поэтому чем выше концентрация серы в металле, тем в большей степени он загрязнен неметаллическими включениями и тем ниже будут показатели ударной вязкости.

Заключение

Проведенный анализ указывает на необходимость и целесообразность разработки технологий модифицирования и рафинирования расплавов стали с целью получения стабильно низких концентраций серы для обеспечения высоких свойств отливок. Также необходимо внести изменения в стандарты на изготовление стальных отливок по содержанию серы в сталях. Существующие стандарты допускают содержание серы до 0,05% при основном процессе плавки и до 0,06% — при кислом [2]. В то же время зарубежные стандарты, например ASTM, DIN и др., предусматривают содержание серы не более 0, 03%.

Список литературы

- Лунёв В.В., Аверин В.В. Сера и фосфор в стали. М.: Металлургия, 1988. 256 с.
- Шульте Ю.А. Электрометаллургия стального литья. М.: Металлургия, 1970. 328 с.
- ГОСТ 977-88. Отливки стальные. Общие технические условия. М.: Изд-во стандартов, 1989. 56 с.

INFORMATION ABOUT THE PAPER IN ENGLISH

PROBLEM WITH SULFUR IN CAST STEEL

Kolokoltsev Valery Mikhailovich – D.Sc. (Eng.), Professor, Rector of Nosov Magnitogorsk State Technical University, Russia. Tel.: +7 (3519) 29 84 02. E-mail: kwm@magtu.ru.

Kotok Alexey Petrovich – Ph.D. (Eng.), Chief Engineer of CJSC Mechanical repair complex, OJSC MMK, Russia. **Dolbilov Kirill Alexandrovich** – Postgraduate Student, Nosov Magnitogorsk State Technical University, Russia.

Abstract. This article studies the effect of sulfur on the mechanical properties of cast steels used for shaped castings. It is shown that the sulfur content in steels above 0.023% leads to a sharp decrease in their strength, toughness, ductility, which significantly reduces the operational stability of castings. We made a conclusion about the need to introduce new steel desulfurization technologies in the steel foundry.

Keywords: cast steel, electric arc furnace, sulfur, nonmetallic inclusions, mechanical properties.

References

- Lunev V.V., Averin V.V. Sera i fosfor v stali [Sulfur and phosphorus in steel]. Moscow: Metallurgy, 1988, 256 p.
- Shulte Yu.A. Ehlektrometallurgiya stal'nogo lit'ya [Electrometallurgy of steel casting]. Moscow: Metallurgy, 1970, 328 p.
- GOST 977-88. Steel castings. General specifications. Moscow: 1989, 56 p.

УДК 621.74.047

МЕТОДИКА ОПРЕДЕЛЕНИЯ РАЦИОНАЛЬНОЙ ДЛИНЫ ПОДДЕРЖИВАЮЩЕЙ СИСТЕМЫ УЗКИХ ГРАНЕЙ НЕПРЕРЫВНОЛИТОГО СЛЯБА ДЛЯ ПРЕДОТВРАЩЕНИЯ ВЫПУЧИВАНИЯ

Шевченко Е.А. 1 , Столяров А.М. 1 , Шаповалов А.Н. 2

Анномация. Разработана методика определения рациональной длины поддерживающей системы из роликов, расположенной на раме кристаллизатора, узких граней непрерывнолитого сляба. В ней предлагается производить проверку соотношения между внутренним распирающим давлением жидкого металла и условным пределом текучести затвердевшего металла корочки заготовки.

Ключевые слова: непрерывнолитой сляб, узкие грани, выпучивание, методика, кристаллизатор, роликовая система, рациональная длина.

¹ Магнитогорский государственный технический университет им. Г.И. Носова, Россия

² Новотроицкого филиала НИТУ «МИСиС», Россия