УЛК 622.833

Криницын Р.В.

МОНИТОРИНГ НАПРЯЖЕННОГО СОСТОЯНИЯ МАССИВОВ РУД И ПОРОД В ОЧИСТНЫХ БЛОКАХ ШАХТЫ «МАГНЕЗИТОВАЯ»

Саткинское месторождение магнезитов, расположенное в Челябинской области, г. Сатка, представлено серией рудных тел пласто- и линзообразной формой длиной по простиранию от 1,3 до 3,6 км, по падению 100–150 м. Азимут простирания рудных тел 45–55°, падение на юговосток под углом 35–45°. Средняя нормальная мощность рудных тел 30 м. Вмещающие породы залегают согласно рудным телам и представлены доломитом, сланцами и диабазами. Контакт вмещающих пород с рудой резко выражен, массив разбит тре щинами различного направления.

Саткинское месторождение отрабатывается открытым и подземным способом. Отработка нижней части месторождения ведется на горизонтах +340, +260, +180 м. К отработке готовится подэтаж +100 м. Отработка рудных тел подземным способом ведется камерно-столбовой системой восходящими горизонтальными слоями с сухой закладкой выработанного пространства и камерной системой с закладкой камер твердеющими смесями. Для определения оптимальных параметров системы разработки и обеспечения устойчивости массивов руд и пород в очистных блоках на шахте «Магнезитовая» на указанных горизонтах было определено напряженное состояние массива методами щелевой разгрузки, электрометрии и сейсмометрии.

На шахте «Магнезитовая» на трех горизонтах: +297; +277 и +180 м была проведена щелевая разгрузка. На горизонте +297 м разгрузочные щели бурили в камере № 413 и прилегающим к нему разрезном штреке. Было пробуре но шесть щелей.

Аналогичные исследования проведены для горизонта $+277 \,\mathrm{m}$, где было пробурено пять щелей (три щели в камере № 219 и две в разрезном штреке).

На горизонте +180 м измерения НДС горных пород проводились в ортах № 3, 4 и 6, а также в штреке висячего бока. Всего пробурено двадцать щелей. Результаты замеров деформаций массива и обработки результатов представлены в **табл.1**.

Анализ измерения напряжений на нижележащем горизонте +180 м показывает, что массив нагружен неравномерно, максимальные сжимающие напряжения расположены по простиранию рудного тела. Это объясняется наличием большой раздробленности массива трещинами, расположенными вкрест простирания рудного тела. Результаты измерений позволили опреде-

лить оптимальные параметры конструктивных элементов системы разработки.

Вслед за отработкой части опытно-добычного блока (ОДБ) камерной системой и частичной закладки камер твердеющими смесями добыча блока была приостановлена из-за недостаточной

Таблица 1
Результаты замеров деформаций массива и обработки результатов

				1	
Номер щели	Расположение	ε, MM	σк, МПа	σм, МПа	
	Гор.+297 м, камера № 413				
1	вертикальная	0,13	-13,6	-16,3	
2	горизонтальная	0,09	-9,4	-9,0	
3	вертикальная	0,11	-11,5	-14,2	
4	горизонтальная	0,07	-7,3	-8,3	
Гор. +297 м, разрезной штрек					
5	вертикальная	0,08	-9,0	-12,4	
6	вертикальная	0,10	-11,2	-13,3	
Гор.+277 м, камера № 219					
7	вертикальная	0,12	-12,6	-16,1	
8	вертикальная	0,14	-14,7	-18,2	
9	горизонтальная	0,10	-10,5	-13,0	
Гор. +277 м, разрезной штрек					
10	вертикальная	0,22	-6,8	-12,5	
11	вертикальная	0,10	-11,2	-16,9	
Гор.+180 м, орт № 3					
12	вертикальная	0,24	-25,2	-31,5	
13	горизонтальная	0,33	-34,6	-29,0	
14	вертикальная	0,21	-21,8	-28,1	
15	горизонтальная	0,18	-18,9	-25,2	
Гор.+180 м, орт № 4					
16	горизонтальная	0,25	-26,2	-24,9	
17	вертикальная	0,18	-18,9	-26,8	
18	вертикальная	0,07	-7,3	-15,2	
19	горизонтальная	0,14	-14,7	-19,8	
20	вертикальная	0,12	-12,6	-20,5	
21	вертикальная	0,18	-18,9	-26,8	
22	горизонтальная	0,14	-14,7	-18,9	
Гор.+180 м, орт № 6					
23	вертикальная	0,28	-29,4	-38,0	
24	горизонтальная	0,20	-21,0	-26,8	
25	вертикальная	0,26	-27,3	-35,9	
Гор.+180 м, штрек висячего бока					
26	вертикальная	0,30	-33,4	-42,1	
27	вертикальная	0,27	-30,1	-38,8	
28	вертикальная	0,22	-24,6	-33,3	
29	вертикальная	0,23	-25,8	-34,5	
30	горизонтальная	0,12	-13,4	-15,9	

мощности закладочного комплекса. Было принято решение отработать нижележащие горизонты камерно-столбовой системой с вертикальными и наклонными целиками. Для уточнения параметров избранной системы разработки и обеспечения устойчивости целиков были заложены наблюдательные станции, состоящие из глубинных реперов, фотоупругих датчиков, реперных линий. Результаты замеров этих станций представлены в табл. 2 и на рис. 1. Результаты измерений по фотоупругим датчикам и реперной линии показывают, что пригрузка массива, вызванная образованием выработанного пространства, постепенно снижается. Отсутствие деформаций растяжения и низкие значения приращения напряжений, зарегистрированных с помощью фотоупругих датчиков, свидетельствуют об устойчивости лниша очистного блока.

Наблюдения за поведением целиков в очистном блоке №2 гор. 180 м. осуществляются с помощью станции автоматического контроля деформаций массива «Массив — II», разработанной НПО «Автоматика» г. Красноярска. При оборудовании станции в ленточном и в ближайшем к нему наклонном целиках было пробурено по одной скважине, и в каждой из них установлены по два глубинных репера. Замеры осуществляются в автоматическом режиме 2 раза в сутки. Результаты замеров представлены на рис. 2-4.

Таблица 2 Результаты измерения смещений по реперной линии

Дата	Длина	Приращение длины, мм		
замера	линии, мм	абсолютное	относительное	
10.09.03	9422,10	0,00	0,00	
28.10.03	9422,05	-0,05	-0,05	
21.01.04	9421,90	-0,20	-0,15	
10.03.04	9422,22	0,12	+0,27	
14.04.04	9417,84	-4,26	-4,38	
25.05.04	9419,50	-2,60	+2,06	
10.06.04	9418,50	-3,60	-1,00	
28.09.04	9420,09	-2,01	+1,59	
27.10.04	9422, 10	0	+2,01	
03.03.05	9421,15	-0,95	-0,95	
24.05.05	9419,55	-2,55	-1,60	
14.07.05	9420,00	-2,10	+0,45	
20.09.05	9421,35	-0,75	+1,25	
06.12.05	9421,10	-0,90	-0,15	

Приведенные на рис. 2, 3 и 4 результаты измерений позволяют утверждать, что за время наблюдений НДС массива в месте расположения контролируемых целиков практически не изменилось. Скачок смещений в феврале 2005 г. связан с бурением в непосредственной близости от установленных реперов технологической скважины. Отсутствие изменений в НДС массива объясняется

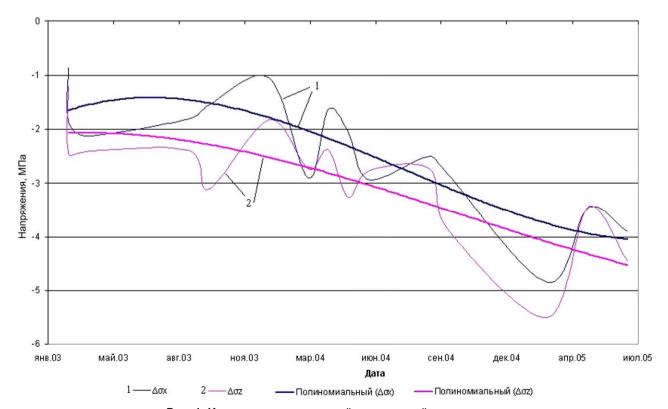


Рис. 1. Изменения приращений напряжений во времени

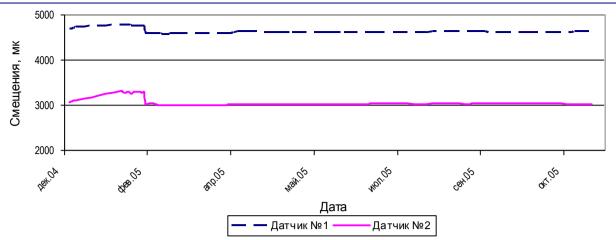


Рис. 2. Графики за меров деформационной станции «Массив II» в вертикальной скважине

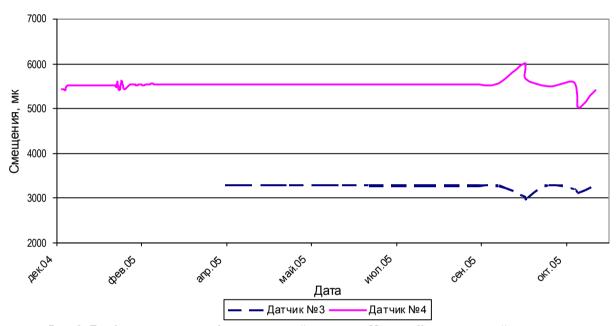


Рис. 3. Графики за меров деформационной станции «Массив II» в наклонной скважине

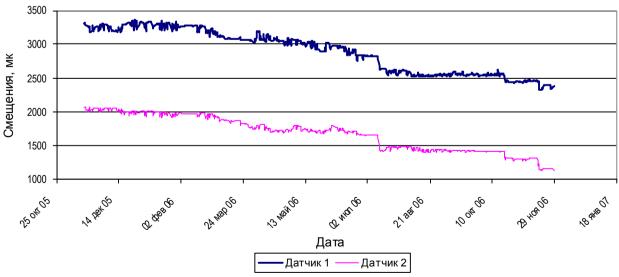


Рис. 4. Графики за меров деформационной станции «Массив II» в вертикальной скважине

тем, что верхняя граница очистных работ находилась ниже отметки верхнего датчика в ленточном целике. Можно утверждать, что установленная система вполне работоспособна: по линии, установленной в наклонном целике, с сентября 2005 г. фиксировались знакопеременные деформации массива. В конце октября 2005 г. произошел вывал реперов, вызванный тем, что наклонная скважина была пробурена не по центру наклонного целика и подсечена отрабатываемым слоем второго очистного блока.

При вскрытии очистного блока №1 были выявлены субвертикальные трещины северного направления, а также так называемые «зеркала скольжения», представляющие собой трещины, заполненные углисто-глинистыми породами. Поэтому для устойчивости очистных выработок дальнейшая отработка блока осуществлялась камерной системой разработки с применением узких ленточных целиков шириной 4 м. Контроль за состоянием целиков осуществлялся с помощью сейсмопрофилирования и электрометрии.

При отработке блока № 2 для устранения негативных последствий влияния «зеркал скольжения» были применены столбчатые наклонные целики с оптимальным углом падения 70°. Однако при отработке горизонгальных нижних слоев в блоке, кроме «зеркал скольжения» северного направления, были выявлены данные нарушения южного направления,

что препятствует дальнейшему применению столбчатых наклонных целиков. Поэтому дальнейшая отработка блока стала осуществляться с применением ленточных целиков шириной 6 м. После их ввода в эксплуатацию устойчивость массива и очистного пространства стабилизировалась. С учетом лабораторных исследований и опыта отработки блоков № 1 и 2 дальнейшую эксплуатацию месторождения решено вести восходящими горизонтальными слоями с оставлением ленточных целиков с сухой закладкой выработанного пространства.

Была проведена оценка влияния закладки на несущую способность столбчатых целиков, в том числе и при наличии зеркал скольжения с южным падением. Где выявилось что:

- Применение наклонных целиков не может гарантировать отсутствие смещений по тектоническим нарушениям.
- Единственными способами предотвращения деформаций по тектоническим нарушениям являются использование ленточных целиков, крепление их приконтурной части и мероприятия по снижению влияния буровзрывных работ на несущую способность целиков.
- Закладка, применяемая на шахте «Магнезитовая», представляет собой мелкий щебень с низким коэффициентом неоднородности и практически не оказывает влияние на несущую способность целиков.

Библиографический список

- 1. Рекомендации по повышению устойчивости целиков в блоке № 1 шахты Магнезитовая при наличии в них субвертикальных трещин: Отчет о НИР /ИГД УрО РАН; Руководитель работы Шуплецов Ю.П. Екатеринбург, 2001. 15 с.
- 2. Геомеханическое обеспечение безопасного и эффективного производства горных работ на шахте Магнезитовая: Отчет о НИР /ИГД УрО РАН; Руководитель работы Шуплецов Ю.П. Екатеринбург, 2005.26 с.
- 3. Рекомендации по обеспечению устойчивости целика 1–2 в камерах блока № 2 г. +214 м на шахте «Магнезитовая» / ИГД УрО РАН. 2005. 7 с.
- 4. Рекомендации по обеспечению безопасности отработки запасов блока № 2 выше гор. +222 м на шахте «Магнезитовая» / ИГД УрО РАН, 2005. 16 с.
- 5. Зотеев В.Г., Зотеев О.В., Зотеева Е.О. Расчетный метод определения нормативных и прочностных показателей физико-механических свойств несвязных грунтов // Водное хозяйство России. 2004. № 5. Т. 6. С. 519–547.
- 6. Разработка, изготовление и внедрение технологического процесса и оборудования для обогащения магнезитов Саткинского месторождения в тяжелых суспензиях: Отчет о НИР / Уралмеханобр. Свердловск, 1989.
- 7. Изыскание безопасного и эффективного способа подземной разработки первой очереди ш. «Магнезитовая»: Отчет о НИР / ИГД УрО РАН; Руководитель работы Влох Н.П. Екатеринбург, 1993. 136 с.
- 8. Расчет параметров камерно-столбовой системы разработки с сухой закладкой для блока № 1 гор. 180 м: Отчет о НИР / ИГД УрО РАН; Руководитель работы Влох Н.П. Екатеринбург, 1998. 66 с.
- 9. Прочность и деформируемость горных порогд /Карташов Ю.М., Матвеев Б.В., Михеев Г.М., Фадеев А.Б.М.: Недра, 1979. 269 с.
- 10. Зубков А.В. Геомеханика и геотехнология. Екатеринбург: УрО РАН, 2001. 335 с.
- 11. Исследование, промышленные испытания и корректировка параметров системы разработки на шахте «Магнезитовая»: Отчет о НИР / ИГД УрО РАН; Руководитель работы Влох Н.П. Екатеринбург, 1998. 46 с.
- 12. Геомеханическое обеспечение безопасных параметров подэтажно-камерной системы при ее опытно-промышленном испытании: Отчет о НИР / ИГД УрО РАН; Руководитель работы Влох Н.П. Екатеринбург, 1997. 31 с.
- 13. Рекомендации по корректировке параметров камерно-столбовой системы с сухой закладкой при отработке опытного блока 1 шахты «Магнезитовая» / ИГД УрО РАН. 1999. 21 с.
- 14. Рекомендации по параметрам подземной отработки прибортовых запасов Карагайского карьера выше гор. +180 м / ИГД УрО РАН. Екатеринбург, 1999 г.