ОБРАБОТКА МЕТАЛЛОВ ДАВЛЕНИЕМ

- 6. Улучшение качества поверхности холоднокатаных полос / Настич В.П, Чернов П.П., Божков А.И. и др.// Производство проката. 2003. № 3. С. 9–15.
- 7. Профилирование валков листовых станов / А.А. Будаква, Ю.В. Коновалов, К.Н. Ткалич и др. Киев: Техніка, 1986. 190 с.

УДК 621.771

С.Н. Горшков, С.В. Денисов, А.В. Шаргунов, А.В. Титов, Г.Н. Посаженников, В.В. Галкин

РАЗРАБОТКА И ОСВОЕНИЕ ТЕХНОЛОГИИ ПРОИЗВОДСТВА НА СТАНЕ 2500 Г.П. ПРОКАТА ИЗ СТАЛИ МАРКИ 20 ПО ГОСТ 4041-71 И ТС 14-101-791-2004

До января 2004 года прокат из стали марки 20 толщиной 8,0...10,0 мм по ГОСТ 4041-71 и ТС 14-101-791-2004 при несоответствии механических свойств после горячей прокатки (обеспечение твердости не более 127 НВ) согласно ГОСТ 4041-71 подвергался последующей термической обработке (нормализации в проходной печи ЛПЦ-4).

В январе 2004 года (приказ ОАО «ММК» № 70 от 26.01.2004 г.) печь нормализации в ЛПЦ-4 была демонтирована.

Для выполнения заказов на данный металлопрокат с гарантией механических свойств, в условиях отсутствия средств термической обработки, на основе ранее проведенных исследований в условиях ОАО «ММК» [1–3] и других металлургических предприятиях [4–6] была разработана и предложена новая технология, особенностями которой являются снижение массовой доли следующих элементов: С=0,17...0,20%, Si=0,17...0,27% и

Мп=0,35...0,45%; корректировка температурнодеформационных режимов прокатки (Т₃, Ткп, Тсм, толщина раската перед чистовой группой, скорость и ускорение), последеформационной выдержки и схемы ускоренного охлаждения полос на отводящем рольганге.

Отработку технологии производства металло-проката из стали марки 20 по ГОСТ 4041-71 и ТС 14-101-791-2004 можно разбить на три этапа.

Отличительные особенности этапов отработки технологии заключались в следующем:

1 этап – Tcм:

для толщины 8,0 мм -655...685°C; для толщин 8,1...10,0 мм -635...665°C, охлаждение полос на отводящем рольганге осуществляли с секции № 15;

2 этап – Тсм:

для толщины 8,0 мм – 660...700°С; для толщин 8,1...10,0 мм – 650...690°С, охлаждение полос на отводящем рольганге осуществляли с секции № 21;

3 этап – Тсм:

для толщины $8,0 \text{ мм} - 670...710^{\circ}\text{C}$; для толщин $8,1...10,0 \text{ мм} - 670...700^{\circ}\text{C}$, охлаждение полос на отводящем рольганге осуществляли с секции $N \ge 27$.

На каждом этапе проводились опытные прокатки, в ходе которых фиксировались: химический состав стали, температурные и скоростные режимы прокатки, а также порядок включения секций установки ускоренного охлаждения.

Таблица 1

Химический состав стали марки 20, %

Этап освое- ния	Содер- жание	С	Si	Mn	S	Р	Cr	Ni	Cu	N2	Al	Мо	V
	Мини- мальное	0,17	0,20	0,38	0,008	0,009	0,02	0,02	0,03	0,004	0,032	0,003	0,002
1	Макси- мальное	0,20	0,25			0,019		· ·					0,010
	Среднее	0,182	0,219	0,435	0,015	0,014	0,028	0,031	0,052	0,005	0,046	0,004	0,005
2	Мини- мальное	0,17	0,20	0,40	0,009	0,007	0,01	0,02	0,02	0,004	0,038	0,003	0,003
	Макси- мальное	0,19	0,25			0,021		0,04		,			0,015
	Среднее	0,178	0,224	0,469	0,016	0,014	0,021	0,031	0,047	0,005	0,048	0,004	0,009
3	Мини- мальное	0,17	0,19	0,40	0,011	0,008	0,01	0,01	0,02	0,004	0,037	0,002	0,003
	Макси- мальное	0,18	0,27	0,52	0,025	0,019	0,04	0,08	0,10	0,007	0,055	0,011	0,015
	Среднее	0,172	0,218	0,448	0,017	0,014	0,022	0,029	0,041	0,005	0,046	0,004	0,007

Вестник МГТУ им. Г. И. Носова. 2007. № 2.

Таблица 2 Технологические параметры прокатки и охлаждения полос из стали марки 20 толщиной 8 и 10 мм

Этап	Толщина	Толщина	T ₃ , °C	Ткп, °С	T _{CM} , °C	А, м/c ²	Скорости по клетям чистовой группы, м/с					
освоения	раската, мм	полосы, мм	13, 0				5	6	7	8	9	10
1	30	8,0	1100–1145	845–875	655–690	0,01	1,23	1,66	2,07	2,60	3,14	3,56
	30	10,0	1110–1150	830-860	630–670	0,01	1,05	1,34	1,60	1,97	2,34	2,61
2	30	8,0	1070–1110	840–870	655–695	0,01	1,06	1,47	1,86	2,32	2,76	3,20
	30	10,0	1100–1145	830–860	660–700	0,01	1,08	1,41	1,65	2,02	2,33	2,58
3	30	8,0	1120–1150	835–865	675–710	0,01	1,08	1,48	1,86	2,32	2,80	3,10
	30	10,0	1120–1145	820–855	665–705	0,01	1,03	1,36	1,63	1,96	2,23	2,43

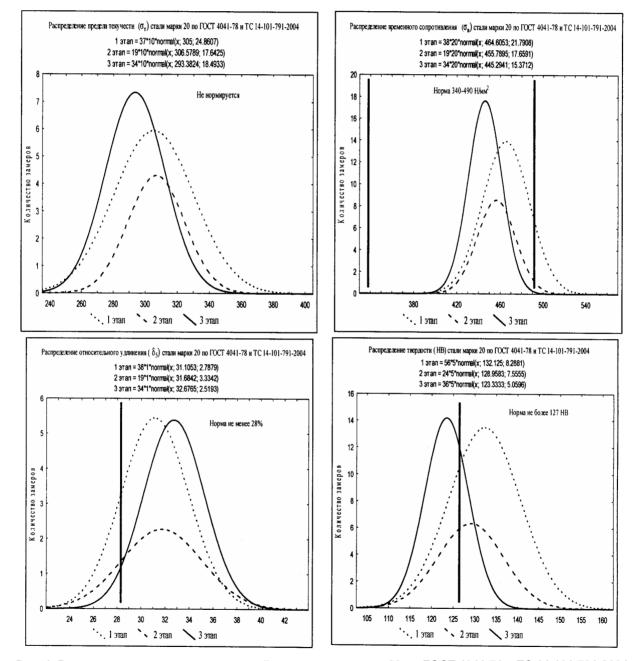


Рис. 1. Распределение механических свойств на стали марки 20 по ГОСТ 4041-71 и ТС 14-101-791-2004 в зависимости от этапа разработки

Таблица 3
Параметры охлаждения полос из стали марки 20 толщиной 8 и 10 мм

Этап освое ния	Толщина полосы,	Точка нача- ла душиро- вания, с	Количество коллекторов межклетье-	Секции души- рующей уста- новки, шт.		
	ММ	(№ секции)	вого охлаж- дения, шт.	верхние	нижние	
1	8,0	12,3 (№ 15)	3	6	10	
	10,0	16,8 (№ 15)	4	10	14	
2	8,0	16,3 (№ 21)	3	6	9	
	10,0	20,2 (№ 21)	4	8	10	
3	8,0	25,9 (№ 27)	3	5	6	
	10,0	33,1 (№ 27)	4	6	7	

Химический состав и технологические режимы прокатки полос из стали марки 20 приведены в **табл. 1, 2**.

При прокатке полосы в чистовой группе производилось охлаждение в межклетьевых промежутках. Параметры охлаждения полос на центральном рольганге и межклетьевых промежутках представлены в табл. 3.

Распределение механических свойств (предела текучести, временного сопротивления, удлинения и твердости) в зависимости от этапа приведены на рис. 1.

Как видно из **рис. 1**, с увеличением последеформационной выдержки проката из стали марки 20 при остальных примерно одинаковых условиях прокатки происходит снижение прочностных и повышение пластических характеристик металла.

Так, при увеличении последеформационной

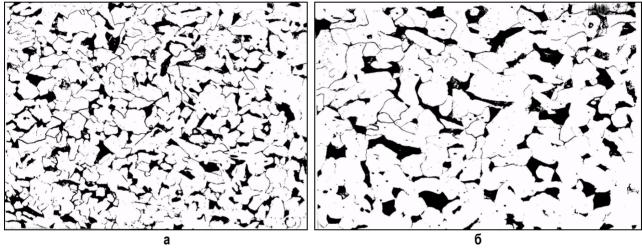


Рис. 2. Микроструктура стали марки 20 толщиной 8 мм при увеличении х400: а – ускоренное охлаждение с 15 секции; б – ускоренное охлаждение с 27 секции

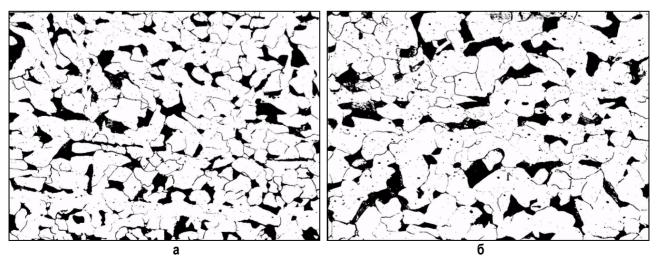


Рис. 3. Микроструктура стали марки 20 толщиной 10 мм при увеличении х400: а – ускоренное охлаждение с 15 секции; б – ускоренное охлаждение с 27 секции

Вестник МГТУ им. Г. И. Носова. 2007. № 2.

Результаты оценки микроструктуры

Толщи-	Точка начала душирования, с	Величина зе ба	рна феррита, лл	Загрязненнос ческих вклю		Полосча-	Видман- штетт,	Дисперсность перлита, балл	
	(№ секции)	Середина	Поверхность	Сульфиды	Строчечные оксиды	тость, балл	балл		
8	12,3 (№ 15)	7–8	7–8	5	1–2	1	1–2	1–4	
8	25,9 (№ 27)	7–6	7–8	5	4–5	1–2	0–1	1–3	
10	16,8 (№ 15)	7–6	7–8	4–5	2	1–2	1	1–3	
10	33,1 (№ 27)	6–7	7–8	3–4	2	1–2	1	1–3	

выдержки на 13,6...16,4 с для проката толщиной 8 и 10 мм соответственно происходит снижение: временного сопротивления на 11,6 Н/мм²; предела текучести на 19,4 Н/мм², твердости на 8,8 единицы НВ, при этом относительное удлинение повышается на 1,5%.

Следует отметить, что химический состав стали марки 20 на всех этапах отработки технологии характеризуется высокой стабильностью практически по всем элементам (см. **табл. 1**).

Кроме того, для исследования влияния последеформационной выдержки на микроструктуру проводили отбор проб для металлографических исследований. Результаты исследований представлены в табл. 4 и на рис. 2, 3.

Сравнивая требования нормативных документов (ГОСТ 4041-71, ТС 14-101-791-2004) с фактическим уровнем физико-механических свойств проката (см. рис. 3, 4), видно, что предложенная технология с ускоренным охлаждением с 27 секции удовлетворяет требованиям НД. Кроме того,

обеспечивается более высокая однородность механических свойств проката.

Заключение

Для производства стали марки 20 по ГОСТ 4041-71 и ТС 14-101-791-2004 с получением гарантированных механических свойств в горячекатаном состоянии необходимо:

- ограничить содержание химического состава в следующих диапазонах: C=0,17...0,20%, Si=0,17...0,27% и Mn=0,35...0,45%;
- выдерживать заправочную скорость прокатки в чистовой группе клетей для толщины полосы 8,0...10,0 мм не более 200 м/мин (3,3 м/с);
- выдерживать температуру конца прокатки полос в диапазоне: для толщины 8,0 мм – 835...865°С; для толщин 8,1...10,0 мм – 825...855°С;
- выдерживать температуру смотки полос в диапазоне: для толщины 8,0 мм 670...710°C;
 для толшин 8.1...10.0 мм 670...700°C;
- охлаждение полосы на отводящем рольганге осуществлять не ранее чем с секции № 27.

Библиографический список

- 1. Разработка и корректировка режимов автоматического охлаждения полос на отводящем рольганге стана 2000 / М.А. Молостов, Н.Н. Карагодин и др. // Совершенствование технологии в ОАО «ММК»: Сб. трудов ЦЛК. Вып. 4. Магнитогорск, 2000. С. 120–135.
- 2. Технология горячей прокатки полос после модернизации установки ламинарного охлаждения на отводящем рольганге стана 2500 горячей прокатки ОАО «ММК» / Денисов С.В., Горшков С.Н., Шаргунов А.В., Посаженников Г.Н., Галкин В.В. // Металлург. 2007. № 1. С. 53–55.
- 3. Разработка технологии горячей прокатки полос с учетом реконструкции установки ламинарного охлаждения на отводящем рольганге стана 2500 горячей прокатки» / Карагодин Н.Н., Денисов С.В., Посаженников Г.Н., Горшков С.Н. // Материалы межзаводской школы по обмену опытом специалистов листопрокатного производства ОАО «ММК», ОАО «НЛМК», ОАО «СеверСталь» (14–23 июня 2006 г.). М.: ООО «Корпорация «Чермет», 2006. С. 18–25.
- 4. Коцарь С.Л., Белянский А.Д., Мухин Ю.А. Технология листопрокатного производства. М.: Металлургия, 1997. 272 с.
- 5. Охлаждение полос при горячей прокатке на непрерывных широкополосных станах / Е.В. Смирнов, Б.А. Гунько и др. // Сталь. 1980. № 5. С. 388–394.
- 6. Влияние режимов ускоренного охлаждения на свойства и структуру полосового проката / Л.В. Коваленко, А.А. Азаркевич, И.В. Франценюк и др. // Сталь. 1978. № 10. С. 951–955.